
Flavio Ferrarotti
Stefan Woltran (Eds.)

 123

LN
CS

 1
08

33

10th International Symposium, FoIKS 2018
Budapest, Hungary, May 14–18, 2018
Proceedings

Foundations
of Information and
Knowledge Systems

Lecture Notes in Computer Science 10833

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

Flavio Ferrarotti • Stefan Woltran (Eds.)

Foundations
of Information and
Knowledge Systems
10th International Symposium, FoIKS 2018
Budapest, Hungary, May 14–18, 2018
Proceedings

123

Editors
Flavio Ferrarotti
Software Competence Center Hagenberg
Hagenberg im Mühlkreis
Austria

Stefan Woltran
Vienna University of Technology
Vienna
Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-90049-0 ISBN 978-3-319-90050-6 (eBook)
https://doi.org/10.1007/978-3-319-90050-6

Library of Congress Control Number: 2018940148

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-1594-8972

Preface

This volume contains the articles that were presented at the 10th International Sym-
posium on Foundations of Information and Knowledge Systems (FoIKS 2018) held in
Budapest, Hungary, during May 14–18, 2018.

The FoIKS symposia provide a biennial forum for presenting and discussing the-
oretical and applied research on information and knowledge systems. The goal is to
bring together researchers with an interest in this subject, share research experiences,
promote collaboration, and identify new issues and directions for future research.
Speakers are given sufficient time to present their ideas and results within the larger
context of their research. Furthermore, participants are asked in advance to prepare a
first response to a contribution of another author in order to initiate discussion.

Previous FoIKS symposia were held in Linz (Austria) in 2016, Bordeaux (France) in
2014, Kiel (Germany) in 2012, Sofia (Bulgaria) in 2010, Pisa (Italy) in 2008, Budapest
(Hungary) in 2006, Vienna (Austria) in 2004, Schloss Salzau near Kiel (Germany) in
2002, and Burg/Spreewald near Berlin (Germany) in 2000. FoIKS took up the tradition
of the conference series Mathematical Fundamentals of Database Systems (MFDBS),
which initiated East–West collaboration in the field of database theory. Former MFDBS
conferences were held in Rostock (Germany) in 1991, Visegrád (Hungary) in 1989, and
Dresden (Germany) in 1987.

FoIKS 2018 solicited original contributions on foundational aspects of information
and knowledge systems. This included submissions that apply ideas, theories, or
methods from specific disciplines to information and knowledge systems. Examples of
such disciplines are discrete mathematics, logic and algebra, model theory, information
theory, complexity theory, algorithmics and computation, statistics, and optimization.
Suggested topics included, but were not limited to, the following:

– Big data: models for data in the cloud, programming languages for big data, query
processing

– Database design: formal models, dependencies, and independencies
– Dynamics of information: models of transactions, concurrency control, updates,

consistency preservation, belief revision
– Information fusion: heterogeneity, views, schema dominance, multiple source

information merging, reasoning under inconsistency
– Integrity and constraint management: verification, validation, consistent query

answering, information cleaning
– Intelligent agents: multi-agent systems, autonomous agents, foundations of software

agents, cooperative agents, formal models of interactions, negotiations and dia-
logue, logical models of emotions

– Knowledge discovery and information retrieval: machine learning, data mining,
formal concept analysis and association rules, text mining, information extraction

– Knowledge representation, reasoning, and planning: non-monotonic formalisms,
probabilistic and non-probabilistic models of uncertainty, graphical models and
independence, similarity-based reasoning, preference modeling and handling,
computation models of argument, argumentation systems

– Logics in databases and AI: classical and non-classical logics, logic programming,
description logic, spatial and temporal logics, probability logic, fuzzy logic

– Mathematical foundations: discrete structures and algorithms, graphs, grammars,
automata, abstract machines, finite model theory, information theory, coding theory,
complexity theory, randomness

– Security in information and knowledge systems: identity theft, privacy, trust,
intrusion detection, access control, inference control, secure Web services, secure
Semantic Web, risk management

– Semi-structured data and XML: data modeling, data processing, data compression,
data exchange

– Social computing: collective intelligence and self-organizing knowledge, collabo-
rative filtering, computational social choice, Boolean games, coalition formation,
reputation systems

– The Semantic Web and knowledge management: languages, ontologies, agents,
adaptation, intelligent algorithms, ontology-based data access

– The WWW: models of Web databases, Web dynamics, Web services, Web trans-
actions and negotiations, social networks, Web mining

The call for papers resulted in the submission of 40 articles. Each one was carefully
reviewed by at least three international experts. In total, fourteen articles were accepted
for long presentation and six articles were accepted for short presentation. This volume
contains versions of these articles that have been revised by their authors according to
the comments provided in the reviews. After the conference, authors of a few selected
articles were asked to prepare extended versions of their articles for publication in a
special issue of the journal Annals of Mathematics and Artificial Intelligence.

During this symposium we had the opportunity to celebrate Prof. Klaus-Dieter
Schewe’s 60th birthday. FoIKS itself is one of the many successful initiatives of
Prof. Klaus-Dieter Schewe. He is the chair of the FoIKS Steering Committee and
continues to be a major driving force behind the symposium. As a token of appreci-
ation, Prof. Klaus-Dieter Schewe received a Festschrift with contributions from his
former students, collaborators, and colleagues – most are researchers whose academic
careers have been strongly influenced by him.

We wish to thank all authors who submitted papers and all conference participants
for fruitful discussions. We are grateful to our keynote speakers Gerd Brewka, Laura
Kovács, Sebastian Link, David Pearce, and Bernhard Thalheim. We would like to
thank the Program Committee members and additional reviewers for their timely
expertise in carefully reviewing the submissions. The support of the conference pro-
vided by the Artificial Intelligence Journal (AIJ), the Association for Logic Pro-
gramming (ALP), the European Association for Theoretical Computer Science
(EATCS), and by the Vienna Center for Logic and Algorithms (VCLA) is gratefully

VI Preface

acknowledged. We thank the Software Competence Center Hagenberg for hosting the
FoIKS Website and specially Senén González for redesigning and maintaining it. Last
but not least, special thanks go to the local organization team: Tiziana Del Viscio,
Dezsõ Miklós, and Attila Sali, for their support and for being our hosts during the
wonderful days at the Alfréd Rényi Institute of Mathematics in Budapest.

May 2018 Flavio Ferrarotti
Stefan Woltran

Preface VII

Conference Organization

FoIKS 2018 was organized by the Alfréd Rényi Institute of Mathematics.

Program Chairs

Flavio Ferrarotti Software Competence Center Hagenberg, Austria
Stefan Woltran TU Wien, Austria

Program Committee

Yamine Ait Ameur IRIT/INPT-ENSEEIHT, France
Pablo Barceló Universidad de Chile, Chile
Kim Bauters Bristol University, UK
Christoph Beierle University of Hagen, Germany
Leopoldo Bertossi Carleton University, Canada
Philippe Besnard CNRS/IRIT, France
Nicole Bidoit Université Paris Sud, LRI (UMR 8623), France
Meghyn Bienvenu CNRS, University of Montpellier, Inria, France
Joachim Biskup Technische Universität Dortmund, Germany
Marina De Vos University of Bath, UK
Michael Dekhtyar Tver State University, Russia
Dragan Doder IRIT, Université Paul Sabatier, France
Thomas Eiter Vienna University of Technology, Austria
Christian Fermüller Vienna University of Technology, Austria
Flavio Ferrarotti Software Competence Centre Hagenberg, Austria
Marc Gyssens Universiteit Hasselt, Belgium
Edward Hermann

Haeusler
PUC-Rio, Brazil

Martin Homola Comenius University, Bratislava, Slovakia
Anthony Hunter University College London, UK
Gabriel Istrate West University of Timişoara, Romania
Gyula Y. Katona Budapest University of Technology and Economics, Hungary
Gabriele

Kern-Isberner
Technische Universität Dortmund, Germany

Attila Kiss Eötvös Loránd University, Hungary
Ioannis Kokkinis Technische Universität Dortmund, Germany
Sébastien Konieczny CRIL - CNRS, France
Juha Kontinen University of Helsinki, Finland
Nicola Leone University of Calabria, Italy
Sebastian Link The University of Auckland, New Zealand
Thomas Lukasiewicz University of Oxford, UK

Sofian Maabout LaBRI. University of Bordeaux, France
Andrea Marino University of Pisa, Italy
Jorge Martinez-Gil Software Competence Center Hagenberg, Austria
Henri Prade IRIT - CNRS, France
Elena Ravve ORT-Braude College, Israel
Sebastian Rudolph TU Dresden, Germany
Attila Sali Alfréd Rényi Institute of Mathematics, Hungary
Vadim Savenkov Vienna University of Economics and Business, Austria
Klaus-Dieter Schewe Software Competence Center Hagenberg, Austria
Thomas Schwentick Technische Universität Dortmund, Germany
Kostyantyn

Shchekotykhin
Alpen-Adria Universität Klagenfurt, Austria

Csaba István Sidló Hungarian Academy of Sciences, Hungary
Guillermo Ricardo

Simari
Universidad del Sur in Bahia Blanca, Argentina

Mantas Simkus Vienna University of Technology, Austria
Bernhard Thalheim Christian Albrechts University Kiel, Germany
Alex Thomo University of Victoria, Canada
Mirek Truszczynski University of Kentucky, USA
Gyorgy Turan University of Illinois at Chicago, USA
José María Turull

Torres
Universidad Nacional de La Matanza, Argentina

Dirk Van Gucht Indiana University, USA
Jonni Virtema Hasselt University, Belgium
Qing Wang The Australian National University, Australia
Stefan Woltran Vienna University of Technology, Austria

Additional Reviewers

Leila Amgoud
David A. Mix Barrington
Alex Baumgartner
Senén González
Matthias Hofer
Markus Kröll
Martin Lackner
Marco Maratea

Silvia Miksch
Nysret Musliu
Alexandre Rademaker
Gábor Rácz
Kai Sauerwald
Patrik Schneider
Josef Widder

X Conference Organization

Local Organization Chair

Attila Sali Alfréd Rényi Institute of Mathematics, Hungary

Local Organization Team

Tiziana Del Viscio
Dezsõ Miklós

Sponsors

Artificial Intelligence Journal (AIJ)
Association for Logic Programming (ALP)
European Association for Theoretical Computer Science (EATCS)
Vienna Center for Logic and Algorithms (VCLA)

Conference Organization XI

Keynote Speakers

Computational Models of Argument: A New
Perspective on Persisting KR Problems

Gerhard Brewka

University of Leipzig, Germany

Short Biography: Gerhard Brewka is a Professor of Intelligent Systems at Leipzig
University, Germany. His research focuses on knowledge representation, in particular
logic programming, nonmonotonic reasoning, preference and inconsistency handling,
and computational models of argumentation. He served as President of EurAI (formerly
ECCAI), the European Association of AI, and of Knowledge Representation Inc. In
2002, Brewka was awarded a EurAI Fellowship. He is a member of the IJCAI Board of
Trustees and was Conference Chair of IJCAI-16 in New York.

Summary: In the last two decades the area of knowledge representation and reasoning
(KR) has seen a steady rise of interest in the notion of argument, an old topic of study
in philosophy. This interest was fueled by a certain dissatisfaction with existing
approaches, especially to default reasoning and inconsistency handling, and by the
demands of applications in legal reasoning and several related fields.

The ultimate goal of computational argumentation is to enable the development of
computer-based systems capable to support – and to participate in – argumentative
activities. To achieve this goal one has to come up with models which formally capture
the way we usually come to conclusions and make decisions, namely by

1 constructing arguments for and against various options,
2 establishing relationships among the arguments, most notably the attack relation, and
3 identifying interesting subsets of the arguments which represent coherent positions

based on these relations.

In the talk we will highlight some of the main ideas and key techniques that have
been developed in the field and show how they address issues of representing
knowledge, handling inconsistencies, and reasoning by default. We will mainly focus
on Abstract Dialectical Frameworks (ADFs) which substantially generalize the
well-known and widely used Dung Frameworks. In particular, we will demonstrate
how the operator-based techniques underlying ADFs allow us to turn directed graphs
with arbitrary edge labels, which are widely used to visualize argumentation and
reasoning scenarios, into full-fledged knowledge representation formalisms with a
whole range of precisely defined semantics.

Automated Reasoning for Systems Engineering

Laura Kovács

TU Wien, Austria

Short Biography: Laura Kovács is a full professor at the Faculty of Informatics of
Vienna University of Technology (TU Wien). She also holds a part-time professor
position at the Department of Computer Science and Engineering of the Chalmers
University of Technology. She has a diploma in computer science and math from the
West University of Timisoara, Romania and a PhD with highest distinction in computer
science from the Research Institute of Symbolic Computation (RISC-Linz) of the
Johannes Kepler University Linz, Austria. Prior to her appointment to Vienna, she was
an associate professor at Chalmers.

In her research, Laura Kovács deals with the design and development of new
theories, technologies, and tools for program analysis, with a particular focus on
automated assertion generation, symbolic summation, computer algebra, and auto-
mated theorem proving. She is the co-developer of the Vampire theorem prover. In
2014, she received the Wallenberg Academy Fellowship and an ERC Starting Grant.

Summary: Automated reasoning, and in particular first-order theorem proving, is one
of the earliest research areas within artificial intelligence and formal methods. It is
undergoing a rapid development thanks to its successful use in program analysis and
verification, semantic Web, database systems, symbolic computation, theorem proving
in mathematics, and other related areas. Breakthrough results in all areas of theorem
proving have been obtained, including improvements in theory, implementation, and
the development of powerful theorem proving tools.

In this talk I give a brief overview on the main ingredients of automated theorem
proving, and focus on recent challenges and developments in the area. Further, I will
discuss recent applications of theorem proving in rigorous systems engineering.

Old Keys that Open New Doors

Sebastian Link

University of Auckland, New Zealand

Short Biography: Sebastian is a full professor at the Department of Computer Science
in the University of Auckland. His research interests include conceptual data modeling,
semantics in databases, foundations of mark-up languages, and applications of discrete
mathematics to computer science. Sebastian received the Chris Wallace Award for
Outstanding Research Contributions in recognition of his work on the semantics of
SQL and XML data. Sebastian has published more than 150 research articles. He is a
member of the editorial board of the journal Information Systems.

Summary

Keys enforce Codd’s integrity for entities,
Giving fast access to data since the seventies.
The issue of missing information remains fundamental,
Better notions of keys will prove to be instrumental.

We review keys on classical relations,
Recalling the simplest of all axiomatisations.
An extremal cardinality a non-redundant family retains,
Whenever it lives up to Sperner’s anti-chains.
Armstrong relations are built after an anti-key hunt,
The discovery by hypergraph transversals is simply elegant.

As nulls in applications do require some finesse,
We review key sets that have high expressiveness.
Establishing an axiomatisation that is binary,
We show implication to be complete for coNP.
Armstrong relations do not necessarily exist,
The discovery of keys sets as an open problem we enlist.

Key sets with singletons avoid the likely intractability curtain,
Leading to keys that hold in every world so certain.
We look at possible and certain keys together with NOT NULL,
Which lead to problems that are anything but dull.
Implication is easily characterised axiomatically and algorithmically,
The structure and computation of Armstrong relations is captured non-trivially.
Extremal families occupy two levels with some gaps,
The discovery can use transversals in two steps.

We briefly summarise keys on data with veracities,
considering probabilities, possibilities, and contextualities.
Concluding with problems for minds that are bright,
We hope the talk sparks research with heaps of insight.

XVIII S. Link

The Logical Basis of Knowledge
Representation in Answer Set Programming

David Pearce

Universidad Politécnica de Madrid, Spain

Short Biography: David Pearce studied Philosophy, Logic and Scientific Method at
the Universities of Sussex and Oxford, obtaining his D Phil (Sussex) in 1980. From
1982–94 he worked at the Philosophy Institute of the Free University Berlin as a
Lecturer and later Heisenberg Research Fellow. From 1992–94 he was Acting Pro-
fessor at the Universities of Göttingen and Heidelberg. In 1994 he moved to the
German AI Research Centre (DFKI) in Saarbrücken, where until 2000 he coordinated
one of the founding European Networks of Excellence: Compulog Net. From 2000–
2002 he worked at the Future and Emerging Technologies Unit of the European
Commission in Brussels where he was involved in the management and supervision of
EU research programmes. He then moved to Madrid as Ramón y Cajal Research
Fellow at the Rey Juan Carlos University, later becoming professor in the Technical
University of Madrid in 2009. From 2011–14 he coordinated the EU funded action: the
European Network for Social Intelligence (SINTELNET).

David Pearce has worked mainly in the areas of Logic and Knowledge Repre-
sentation, with a special interest in nonmonotonic reasoning and logic programming.
He has made numerous contributions to the field of Answer Set Programming (ASP).
In the late 1980s, together with Gerd Wagner, he introduced the concept of strong
negation into logic programming. From 1995 onwards he developed Equilibrium Logic
as a new logical foundation for ASP. In 2001, together with Vladimir Lifschitz and
Agustín Valverde, he initiated the study of strongly equivalent logic programs which
opened up a new research area in nonmonotonic reasoning and KRR that is still active
today. His current research interests include combining Artificial Intelligence with
Social Ontology. Pearce was elected ECCAI (now EurAI) Fellow in 2014.

Summary: In this talk I give an introduction to the underlying logic of Answer Set
Programming. The basis is a non-classical, intermediate logic and its non-monotonic
extension, known as equilibrium logic. Together they provide an alternative to the
standard paradigm of two-valued, classical logic. In view of the origins of answer set
programming, it seems appropriate to call this new approach stable reasoning. The talk
will focus on the intuitive meaning of the main logical definitions, and explain their
effect with some example programs. I will also discuss some of the main extensions
of the basic language that may be useful for knowledge representation.

Revisiting the Database Constraints Theory

Bernhard Thalheim

Christian-Albrechts-University at Kiel, Germany

Short Biography: Prof. Dr.rer.nat.habil. Bernhard Thalheim (Director, Department of
Computer Science, Faculty of Engineering at Christian-Albrechts University Kiel,
Germany) (MSc, PhD, DSc) is full professor at Christian Albrechts University in
Germany. His major research interests are database theory, logic in databases, and
systems development methodologies, in particular for web information systems. He has
published more than 300 refereed publications, edited more than 30 conference vol-
umes, co-founded three international conferences, and has been programme committee
chair for almost three dozen international conferences such as MFDBS, ER, FoIKS,
ASM, SDKB, NLDB and ADBIS. He got several international awards, e.g. the
Kolmogorov professorship at Lomonossow University Moscow and the P. P. Chen
award of Elsevier. He has been an associated professor at Dresden University of
Technology, a visiting professor at Kuwait University, Alpen-Adria University
Klagenfurt and others, and a full professor at Rostock University and Brandenburg
University of Technology at Cottbus.

Summary: The theory of database constraints has been developed for a long time
within the relational database modelling setting. The 80ies brought a large body of
knowledge and led to the impression that the theory development is completed.
A typical example is normalisation theory that has been developed inside the relational
understanding. It must already be reconsidered for the table database modelling setting.
Cardinality constraints defined in an entity-relationship modelling setting were the most
essential addition to the theory of relational constraints. It seems that the theory of
object-relational constraints is still a lacuna. Therefore, monographs and textbooks
remain to be on the level of the early 90ies as far as constraints are considered.
Database technology brought however powerful and sophisticated systems. So, the
constraints that might be supported without loss of performance are far richer. Database
applications need more sophisticated constraints. So, the paper presents some solutions
for constraint enhancement, constraint handling, structure optimisation, and database
modelling at the conceptual level. It completes with open problems.

Contents

Papers of Invited Talks

Old Keys that Open New Doors . 3
Sebastian Link

Regular Articles

Concatenation, Separation, and Other Properties of Variably
Polyadic Relations. 17

Heba Aamer and Haythem O. Ismail

Compilation of Conditional Knowledge Bases for Computing
C-Inference Relations . 34

Christoph Beierle, Steven Kutsch, and Kai Sauerwald

Characterizing and Computing Causes for Query Answers in Databases
from Database Repairs and Repair Programs . 55

Leopoldo Bertossi

Inferences from Attribute-Disjoint and Duplicate-Preserving
Relational Fragmentations . 77

Joachim Biskup and Marcel Preuß

ASP Programs with Groundings of Small Treewidth 97
Bernhard Bliem

Rationality and Context in Defeasible Subsumption. 114
Katarina Britz and Ivan Varzinczak

Haydi: Rapid Prototyping and Combinatorial Objects 133
Stanislav Böhm, Jakub Beránek, and Martin Šurkovský

Argumentation Frameworks with Recursive Attacks
and Evidence-Based Supports . 150

Claudette Cayrol, Jorge Fandinno, Luis Fariñas del Cerro,
and Marie-Christine Lagasquie-Schiex

A Decidable Multi-agent Logic with Iterations of Upper and Lower
Probability Operators . 170

Dragan Doder, Nenad Savić, and Zoran Ognjanović

Probabilistic Team Semantics . 186
Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier,
and Jonni Virtema

Strategic Dialogical Argumentation Using Multi-criteria Decision Making
with Application to Epistemic and Emotional Aspects of Arguments 207

Emmanuel Hadoux, Anthony Hunter, and Jean-Baptiste Corrégé

First-Order Definable Counting-Only Queries . 225
Jelle Hellings, Marc Gyssens, Dirk Van Gucht, and Yuqing Wu

The Power of Tarski’s Relation Algebra on Trees . 244
Jelle Hellings, Yuqing Wu, Marc Gyssens, and Dirk Van Gucht

Improving the Performance of the k Rare Class Nearest Neighbor Classifier
by the Ranking of Point Patterns. 265

Zsolt László, Levente Török, and György Kovács

Preference Learning and Optimization for Partial Lexicographic Preference
Forests over Combinatorial Domains . 284

Xudong Liu and Miroslaw Truszczynski

Enumeration Complexity of Poor Man’s Propositional Dependence Logic . . . 303
Arne Meier and Christian Reinbold

Refining Semantic Matching for Job Recruitment: An Application
of Formal Concept Analysis . 322

Gábor Rácz, Attila Sali, and Klaus-Dieter Schewe

OntoDebug: Interactive Ontology Debugging Plug-in for Protégé 340
Konstantin Schekotihin, Patrick Rodler, and Wolfgang Schmid

A Framework for Comparing Query Languages in Their Ability to Express
Boolean Queries . 360

Dimitri Surinx, Jan Van den Bussche, and Dirk Van Gucht

A Generalized Iterative Scaling Algorithm for Maximum Entropy Model
Computations Respecting Probabilistic Independencies. 379

Marco Wilhelm, Gabriele Kern-Isberner, Marc Finthammer,
and Christoph Beierle

Author Index . 401

XXII Contents

Papers of Invited Talks

Old Keys that Open New Doors

Sebastian Link(B)

Department of Computer Science, University of Auckland, Auckland, New Zealand
s.link@auckland.ac.nz

Keys enforce Codd’s integrity for entities,
Giving fast access to data since the seventies.
The issue of missing information remains fundamental,
Better notions of keys will prove to be instrumental.

We review keys on classical relations,
Recalling the simplest of all axiomatisations.
An extremal cardinality a non-redundant family retains,
Whenever it lives up to Sperner’s anti-chains.
Armstrong relations are built after an anti-key hunt,
The discovery by hypergraph transversals is simply elegant.

As nulls in applications do require some finesse,
We review key sets that have high expressiveness.
Establishing an axiomatisation that is binary,
We show implication to be complete for coNP.
Armstrong relations do not necessarily exist,
The discovery of keys sets as an open problem we enlist.

Key sets with singletons avoid the likely intractability curtain,
Leading to keys that hold in every world so certain.
We look at possible and certain keys together with NOT NULL,
Which lead to problems that are anything but dull.
Implication is easily characterised axiomatically and algorithmically,
The structure and computation of Armstrong relations is captured
non-trivially.
Extremal families occupy two levels with some gaps,
The discovery can use transversals in two steps.

We briefly summarise keys on data with veracities,
considering probabilities, possibilities, and contextualities.
Concluding with problems for minds that are bright,
We hope the talk sparks research with heaps of insight.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 3–13, 2018.
https://doi.org/10.1007/978-3-319-90050-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_1&domain=pdf
http://orcid.org/0000-0002-1816-2863

4 S. Link

1 Motivation

Keys are a core enabler for data management. They are fundamental for under-
standing the structure and semantics of data. Given a collection of entities, a key
is a set of attributes whose values uniquely identify an entity in the collection.
Keys form the primary mechanism to enforce entity integrity within database
systems [9,31]. Keys are fundamental in many classical areas of data manage-
ment, including data modeling, database design, indexing, transaction process-
ing, and query optimization. Knowledge about keys enables us to (i) uniquely ref-
erence entities across data repositories, (ii) minimize data redundancy at schema
design time to process updates efficiently at run time, (iii) provide better selec-
tivity estimates in cost-based query optimization, (iv) provide a query optimizer
with new access paths that can lead to substantial speedups in query processing,
(v) allow the database administrator to improve the efficiency of data access via
physical design techniques such as data partitioning or the creation of indexes
and materialized views, and (vi) provide new insights into application data. Mod-
ern applications raise the importance of keys even further. They can facilitate the
data integration process, help with the detection of duplicates and anomalies,
provide guidance in repairing and cleaning data, and provide consistent answers
to queries over dirty data. The discovery of keys from data is one of the core
activities in data profiling.

Purpose and organisation. The purpose of this paper is to look at different
notions of keys over incomplete relations. The paper also provides a point of ref-
erence to various computational problems associated with integrity constraints
in general, and keys in particular. The paper is not meant to provide an overview
of the state of the art solutions to these computational problems, but merely to
provide some motivation for their study and the points of entry for such research.
The computational problems are motivated and stated in Sect. 2. The notions
of candidate keys, unique constraints, key sets, possible and certain keys are
exemplified in Sect. 3. The recent class of embedded uniqueness constraints is
briefly discussed in Sect. 4. A short overview about the literature on these com-
putational problems is given in Sect. 5. Some other classes of keys in different
models of data are referenced in Sect. 6. Some open problems are discussed in
Sect. 7.

2 Computational Problems

The effective use and maintenance of keys (and any class of integrity constraints)
makes it necessary to investigate several computational problems.

In practice, data administrators can benefit from knowing how complex the
maintenance of their database can grow. For example, it is useful to know how
large a non-redundant family of keys over a schema with n attributes can be, and
which of these families attain such extreme cardinality. Here, non-redundancy of
the family Σ means that none of the keys σ ∈ Σ is implied by the remaining keys
Σ\{σ} in the family. That is, for every σ ∈ Σ there is some relation that satisfies

Old Keys that Open New Doors 5

all the keys in Σ\{σ} but violates σ. Non-redundancy is an important property
in practice, guaranteeing that no resources are wasted in redundantly validating
the satisfaction of any keys when a database is updated. That is, the maximum
cardinality of non-redundant families of keys also represents the worst possible
number of keys that must necessarily be validated whenever updates occur. More
positively, this number can also be interpreted as the best possible number of
keys from which query optimisations may result.

Name: Extremal

Input: A relation schema R with n attributes

Problem: Which non-redundant families of keys over R

Attain maximum cardinality?

The Extremal problem subsumes the problem of determining what the
maximum cardinality of a non-redundant family of keys actually is. The problem
also assumes that we know what a non-redundant family of keys constitutes.
In other words, we already know for any given set Σ ∪ {ϕ} of keys when Σ
implies ϕ. This is known as the Implication Problem, and asks on input
Σ ∪ {ϕ} whether every relation that satisfies all elements of Σ also satisfies ϕ.
The Implication Problem gains its practical motivation from minimising the
costs in the processing of updates and queries. Indeed, when validating whether
a given update results in a relation that satisfies a given set of keys, then this
set should be non-redundant. Otherwise, we would incur unnecessary overheads.
Similarly, when processing a query we might be able to save time by knowing
that the underlying relation satisfies some key because it is implied by the set
of keys that the relation is known to satisfy. A simple example is the removal of
a superfluous DISTINCT clause because the set of attributes forms a super key.

Name: Implication

Input: Set Σ ∪ {ϕ} of keys

Problem: Does Σ imply ϕ?

Another fundamental problem is the correct acquisition of keys, that is, which
keys actually express business rules that hold on a given application domain? For
this problem, business analysts must often work together with domain experts,
but need to overcome a communication barrier: analysts understand database
concepts but not necessarily the domain, while domain experts understand the
domain but not necessarily database concepts. Sample data has been found very
valuable in addressing this mismatch in expertise [28,30]. The sample should
satisfy all the keys that are currently perceived meaningful by the analysts but
violate any key that they currently perceive meaningless. This amounts to saying

6 S. Link

that the sample constitutes an Armstrong relation for the set of keys currently
perceived to be meaningful [13]. The idea is that analysts and domain experts
inspect the sample together. If there is some key that is incorrectly perceived to
be meaningless, then the sample violates this actually meaningful key and the
domain expert should be able to notice this violation in the sample and point it
out to the analyst, who can then include the key in the set of meaningful ones.
An iteration of this process should lead to a more complete set of meaningful
keys. This approach motivates the problem of computing an Armstrong relation
for a given set of keys, that is, a relation that satisfies every key in the given set
but violates every key that is not implied by the given set.

Name: Armstrong

Input: Set Σ of keys

Problem: How can we compute an Armstrong relation for Σ?

Note that the Armstrong problem assumes that Armstrong relations actu-
ally exist. This is not the case for arbitrary classes of integrity constraints [13],
but it is true for keys over complete relations. Our acquisition problem actually
motivates related computational problems. Instead of pointing out flaws, the
domain expert may want to apply changes to the given sample data to rectify
perceived problems with it. In this case, the business analyst faces the task of
having to extract which keys are satisfied by the modified data sample. The same
problem occurs whenever we want to know which keys are satisfied by a given
data set. This problem is known as the discovery problem, and constitutes an
important task in data profiling [1].

Name: Discovery

Input: A relation r

Problem: What is the set of keys that r satisfies?

Indeed, the combination of solutions to the Armstrong and Discovery
problems does not just offer computational support towards the acquisition of
meaningful keys, but is also helpful in the cleaning of data [44]. Given a relation
r, one may compute an informative Armstrong sample r′ ⊆ r, that is, a ‘small’
subset of r that satisfies the same keys as r. A team of data scientists may now
investigate the sample r′ and apply updates to r′ that resolve instances of dirty
data. These updates are propagated to the original relation r, and the process is
iterated until the team is happy with the newly generated sample r′ as well as
the set Σ of keys that hold on the sample (and therefore on the modified entire
data set). The point here is that the informative Armstrong samples provide a
more targeted representation of the constraints on which the data scientists can

Old Keys that Open New Doors 7

spot problems with the data more easily and respond appropriately. Indeed, the
improvement in data quality goes hand in hand with an improvement in the
acquisition of business rules: violations of business rules guide the data repairs
and data repairs lead to the discovery of business rules [44].

3 Candidate Keys, Key Sets, Possible and Certain Keys

Due to the demand in real-life applications, data models have been extended
to accommodate missing information [17,35]. The industry standard for data
management, SQL, allows occurrences of a null marker to model any kind of
missing value. Occurrences of the null marker mean that no information is avail-
able about an actual value of that row on that attribute, not even whether the
value exists and is unknown nor whether the value does not exist. Codd’s princi-
ple of entity integrity suggests that every entity should be uniquely identifiable
[9]. In SQL, this has led to the notion of a primary key, which is a distinguished
candidate key.

3.1 Candidate Keys and UNIQUE Constraints

A candidate key is a collection of attributes which stipulates uniqueness and
completeness. That is, no row of a relation must have an occurrence of the null
marker on any columns of the candidate key and the combination of values on
the columns of the candidate key must be unique. The class of candidate keys
has been investigated in [19]. The requirement to have a primary key over every
table in the database is often not achievable in practice. Indeed, it can happen
easily that a given relation does not exhibit any candidate key. This is illustrated
by the following example.

Example 1. Consider the following snapshot of data from an accident ward at
a hospital [38]. Here, we collect information about the name and address of a
patient, who was treated for an injury in some room at some time.

Room Name Address Injury Time

1 Miller ⊥ Cardiac infarct Sunday, 16

⊥ ⊥ ⊥ Skull fracture Monday, 19

2 Maier Dresden ⊥ Monday, 20

1 Miller Pirna Leg fracture Sunday, 16

Evidently, the snapshot does not satisfy any candidate key since each column
features some null marker occurrence, or a duplication of some value.

8 S. Link

SQL also supports the concept of a unique constraint. For a set X
of attributes, unique(X) is satisfied by a table unless there are two dif-
ferent rows in the table that have matching non-null values. For example,
the snapshot in Example 1 violates unique({room, name, time}), but satisfies
unique({address}) and unique({injury}). In summary, candidate keys require
completeness while unique constraints do not take into account any rows that
are incomplete on any of its columns. In particular, unique constraints only iden-
tify rows uniquely that are complete on all of its attributes. They are therefore
not suitable to enforce entity integrity.

3.2 Key Sets

In response, Thalheim proposed the notion of a key set [39]. This notion was
investigated further by Levene and Loizou [31]. As the term suggests, a key
set is a set of attribute subsets. Naturally, we call each element of a key set
a key. A relation satisfies a given key set if for every pair of distinct rows in
the relation there is some key in the key set on which both rows have no null
marker occurrences and non-matching values on some attribute of the key. The
flexibility of a key set over candidate keys can easily be recognized, as a candidate
key would be equivalent to a singleton key set, with the only element being the
candidate key. Indeed, with a key set different pairs of rows in a relation may
be distinguishable by different keys of the key set, while all pairs of rows in a
relation can only be distinguishable by the same candidate key. We illustrate the
notion of a key set on our running example.

Example 2. The relation in Example 1 satisfies no candidate key. Never-
theless, the relation satisfies several key sets. For example, the key set
{{injury}, {time}} is satisfied, but not the key set {{injury, time}}.

Unfortunately, it turns out that general key sets do enjoy the nice computa-
tional properties that other notions of keys enjoy. For example, the implication
problem of key sets is coNP -complete and Armstrong relations do not always
exist [18]. Singleton key sets are those key sets that contain only singleton keys as
elements. They enjoy a simple unary axiomatisation, their implication problem
can solved in linear time, and they do enjoy Armstrong relations [18].

3.3 Certain and Possible Keys

Interestingly, singleton key sets correspond to so-called certain keys [24]. Certain
keys are keys that hold over every possible world of an incomplete relation, where
a possible world is a complete relation that results by independently replacing
null marker occurrences in the given incomplete relation by some domain value
or the null marker ‘N/A’ (not applicable, that is, a domain value does not exist).
Similarly, possible keys are keys that hold over some possible world of an incom-
plete relation. The combined class of possible and certain keys together with NOT
NULL constraints has been studied in [24].

Old Keys that Open New Doors 9

Example 3. Consider the following possible worlds of the snapshot from Exam-
ple 1.

Room Name Address Injury Time

1 Miller Radebeul Cardiac infarct Sunday, 16

N/A Schmidt Radebeul Skull fracture Monday, 19

2 Maier Dresden Arm fracture Monday, 20

1 Miller Pirna Leg fracture Sunday, 16

Room Name Address Injury Time

1 Miller Radebeul Cardiac infarct Sunday, 16

3 Schmidt Radeberg Skull fracture Monday, 19

2 Maier Dresden Cardiac infarct Monday, 20

1 Miller Pirna Leg fracture Sunday, 16

The worlds show that the keys {address} and {injury} are possible, but not
certain. It is also simple to observe that the key {injury,time} is certain because
the only null marker occurrence in injury appears together with a time value
that is unique. Similarly, the key {room,name,time} is not possible because the
first and last tuple will have duplicate values in those columns in every world
possible.

4 Embedded Uniqueness Constraints

The class of embedded uniqueness constraints was introduced recently [45].
They are expressions of the form (E,X) over relation schemata R such that
X ⊆ E ⊆ R holds. They are satisfied by an R-relation if the key X is satisfied
by the relation rE ⊆ r that contains those tuples of r which are complete on all
the attributes in E. Embedded uniqueness constraints allow users to stipulate
completeness and uniqueness requirements separately. The unique constraint in
SQL, unique(X), is the special case of embedded uniqueness constraints (E,X)
where E = X. In addition, the satisfaction of embedded uniqueness constraints is
independent of the interpretation of null marker occurrences, since their seman-
tics only relies on the complete fragments that are embedded in an incomplete
relation. Emphasizing the attributes in E − X we sometimes write (E − X,X)
instead of (E,X).

As we have seen, the snapshot of Example 1 does not satisfy the unique con-
straint unique({time, name, room}), but it does satisfy the embedded unique-
ness constraint

(address, {time, name, room}) .

While solutions to the implication problem and the computation of Armstrong
relations were presented in [45], the problem Extremal and Discovery for

10 S. Link

embedded uniqueness constraints were addressed in [43]. The application of the
algorithms for the discovery and computation of Armstrong relations to iterative
data cleansing and business rule acquisition is described in a recent demonstra-
tion paper at SIGMOD [44].

5 Summary

Table 1 shows references to articles that address the computational problems
associated with different classes of keys we have discussed in this paper. They
discuss state of the art results on these computational problems, but also related
problems.

Table 1. References to articles that address the computational problems related to
various notions of keys

Problem Relational keys Key sets Possible and
certain keys

Embedded
uniques

Extremal [4,10,12] [39] [24] [43]

Implication [2,38] [18,39] [24,25] [45]

Armstrong [3,11,13,22,28,34,36,37,40] [18] [24,25] [45]

Discovery [1,5,16,32,33,42] [24–26] [43,44]

6 Other Classes of Keys

Due to the requirements of modern applications, notions of keys have been devel-
oped for different models of uncertain data. These include probabilistic keys [7]
and possibilistic keys [23]. Addressing needs in data exchange and integration,
keys for XML [8,15,20,21] and graphs [14] have emerged. Other classes of keys
include conditional keys [6], keys for RDF [29], and description logics [41].

7 Open Problems

While much is known about keys over complete relations, there are still open
problems in this context. Generally, it is not well understood how minimum-
sized Armstrong relations can be generated and what the exact complexity for
finding Armstrong relations is. While it was recently shown that the discovery
of keys from relations is W[2] -complete in the input size [5], the development
of discovery algorithms for keys that scale well to data sets with large numbers
of columns and rows is a constant challenge. These open problems are at least
as challenging for the notions of keys over incomplete relations, for example for
embedded uniqueness constraints. While it has been characterized when Arm-
strong relations exist for a given set of possible and certain keys with NOT

Old Keys that Open New Doors 11

NULL constraints, the exact complexity of deciding whether Armstrong rela-
tions exist is unknown. Little is known for keys sets, except for the special case
of singleton key sets. The motivation of arbitrarily-sized key sets is not clear,
apart from the ability of stipulating completeness and uniqueness requirements
in a more flexible manner than for candidate keys. All computational problems
for the general class of key sets still leave room for insight. In particular, there
is no algorithm yet for the discovery of key sets. There is also no characterisa-
tion for the existence of Armstrong relations for key sets, and no algorithm for
the computation of Armstrong relations whenever they exist. Challenging prob-
lems for embedded uniqueness constraints do include the computation of ’small’
Armstrong relations and algorithms for their discovery from large data sets. The
inclusion of keys (and other classes of integrity constraints) in computational
problems makes solutions more applicable in database practice, but also more
challenging. For example, certain query answering under primary key constraints
has only been solved recently [27,46], and only for the class of Boolean self-join
free conjunctive queries.

References

1. Abedjan, Z., Golab, L., Naumann, F.: Profiling relational data: a survey. VLDB J.
24(4), 557–581 (2015)

2. Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP
Congress, pp. 580–583 (1974)

3. Beeri, C., Dowd, M., Fagin, R., Statman, R.: On the structure of Armstrong rela-
tions for functional dependencies. J. ACM 31(1), 30–46 (1984)

4. Biskup, J.: Some remarks on relational database schemes having few minimal keys.
In: Düsterhöft, A., Klettke, M., Schewe, K.-D. (eds.) Conceptual Modelling and Its
Theoretical Foundations. LNCS, vol. 7260, pp. 19–28. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28279-9 3

5. Bläsius, T., Friedrich, T., Schirneck, M.: The parameterized complexity of depen-
dency detection in relational databases. In: LIPIcs-Leibniz International Proceed-
ings in Informatics, vol. 63. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2017)

6. Bohannon, P., Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional func-
tional dependencies for data cleaning. In: Chirkova, R., Dogac, A., Özsu, M.T.,
Sellis, T.K. (eds.) Proceedings of the 23rd International Conference on Data Engi-
neering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, 15–20 April 2007, pp.
746–755. IEEE Computer Society (2007)

7. Brown, P., Link, S.: Probabilistic keys. IEEE Trans. Knowl. Data Eng. 29(3),
670–682 (2017)

8. Buneman, P., Davidson, S.B., Fan, W., Hara, C.S., Tan, W.C.: Keys for XML.
Comput. Netw. 39(5), 473–487 (2002)

9. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

10. Demetrovics, J.: On the equivalence of candidate keys with Sperner systems. Acta
Cybern. 4(3), 247–252 (1979)

11. Demetrovics, J., Füredi, Z., Katona, G.O.H.: Minimum matrix representation of
closure operations. Discrete Appl. Math. 11(2), 115–128 (1985)

https://doi.org/10.1007/978-3-642-28279-9_3

12 S. Link

12. Demetrovics, J., Katona, G.O.H., Miklós, D., Seleznjev, O., Thalheim, B.: Asymp-
totic properties of keys and functional dependencies in random databases. Theor.
Comput. Sci. 190(2), 151–166 (1998)

13. Fagin, R.: Horn clauses and database dependencies. J. ACM 29(4), 952–985 (1982)
14. Fan, W., Fan, Z., Tian, C., Dong, X.L.: Keys for graphs. PVLDB 8(12), 1590–1601

(2015)
15. Ferrarotti, F., Hartmann, S., Link, S., Marin, M., Muñoz, E.: The finite implica-

tion problem for expressive XML keys: foundations, applications, and performance
evaluation. In: Hameurlain, A., Küng, J., Wagner, R., Liddle, S.W., Schewe, K.-
D., Zhou, X. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered
Systems X. LNCS, vol. 8220, pp. 60–94. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-41221-9 3

16. Gottlob, G.: Hypergraph transversals. In: Seipel, D., Turull-Torres, J.M. (eds.)
FoIKS 2004. LNCS, vol. 2942, pp. 1–5. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24627-5 1

17. Greco, S., Molinaro, C., Spezzano, F.: Incomplete Data and Data Dependencies in
Relational Databases. Synthesis Lectures on Data Management. Morgan & Clay-
pool Publishers, San Rafael (2012)

18. Hannula, M., Link, S.: Automated reasoning about key sets (2018, to appear)
19. Hartmann, S., Leck, U., Link, S.: On Codd families of keys over incomplete rela-

tions. Comput. J. 54(7), 1166–1180 (2011)
20. Hartmann, S., Link, S.: Unlocking keys for XML trees. In: Schwentick, T., Suciu,

D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 104–118. Springer, Heidelberg (2006).
https://doi.org/10.1007/11965893 8

21. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Trans. Database Syst. 10:34(2), 1–10:33 (2009)

22. Katona, G.O.H., Tichler, K.: Some contributions to the minimum representa-
tion problem of key systems. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006. LNCS,
vol. 3861, pp. 240–257. Springer, Heidelberg (2006). https://doi.org/10.1007/
11663881 14

23. Koehler, H., Leck, U., Link, S., Prade, H.: Logical foundations of possibilistic keys.
In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 181–195.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11558-0 13

24. Köhler, H., Leck, U., Link, S., Zhou, X.: Possible and certain keys for SQL. VLDB
J. 25(4), 571–596 (2016)

25. Köhler, H., Link, S., Zhou, X.: Possible and certain SQL keys. PVLDB 8(11),
1118–1129 (2015)

26. Köhler, H., Link, S., Zhou, X.: Discovering meaningful certain keys from incomplete
and inconsistent relations. IEEE Data Eng. Bull. 39(2), 21–37 (2016)

27. Koutris, P., Wijsen, J.: Consistent query answering for self-join-free conjunctive
queries under primary key constraints. ACM Trans. Database Syst. 42(2), 9:1–
9:45 (2017)

28. Langeveldt, W., Link, S.: Empirical evidence for the usefulness of Armstrong rela-
tions in the acquisition of meaningful functional dependencies. Inf. Syst. 35(3),
352–374 (2010)

29. Lausen, G.: Relational databases in RDF: keys and foreign keys. In: Christophides,
V., Collard, M., Gutierrez, C. (eds.) ODBIS/SWDB -2007. LNCS, vol. 5005, pp.
43–56. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70960-2 3

30. Le, V.B.T., Link, S., Ferrarotti, F.: Empirical evidence for the usefulness of Arm-
strong tables in the acquisition of semantically meaningful SQL constraints. Data
Knowl. Eng. 98, 74–103 (2015)

https://doi.org/10.1007/978-3-642-41221-9_3
https://doi.org/10.1007/978-3-642-41221-9_3
https://doi.org/10.1007/978-3-540-24627-5_1
https://doi.org/10.1007/978-3-540-24627-5_1
https://doi.org/10.1007/11965893_8
https://doi.org/10.1007/11663881_14
https://doi.org/10.1007/11663881_14
https://doi.org/10.1007/978-3-319-11558-0_13
https://doi.org/10.1007/978-3-540-70960-2_3

Old Keys that Open New Doors 13

31. Levene, M., Loizou, G.: A generalisation of entity and referential integrity in rela-
tional databases. ITA 35(2), 113–127 (2001)

32. Lucchesi, C.L., Osborn, S.L.: Candidate keys for relations. J. Comput. Syst. Sci.
17(2), 270–279 (1978)

33. Mannila, H., Räihä, K.: Dependency inference. In: Proceedings of 13th Interna-
tional Conference on Very Large Data Bases, VLDB 1987, 1–4 September 1987,
Brighton, England, pp. 155–158 (1987)

34. Mannila, H., Raihä, K.: Design by example: an application of Armstrong relations.
J. Comput. Syst. Sci. 33(2), 126–141 (1986)

35. Paredaens, J., Bra, P.D., Gyssens, M., Gucht, D.V.: The Structure of the Relational
Database Model. EATCS Monographs on Theoretical Computer Science, vol. 17.
Springer, Heidelberg (1989). https://doi.org/10.1007/978-3-642-69956-6

36. Sali, A., Schewe, K.: Keys and Armstrong databases in trees with restructuring.
Acta Cybern. 18(3), 529–556 (2008)

37. Sali, A., Székely, L.: On the existence of Armstrong instances with bounded
domains. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol.
4932, pp. 151–157. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-77684-0 12

38. Thalheim, B.: Dependencies in Relational Databases. Teubner (1991)
39. Thalheim, B.: On semantic issues connected with keys in relational databases per-

mitting null values. Elektronische Informationsverarbeitung Kybernetik 25(1/2),
11–20 (1989)

40. Thi, V.D.: Minimal keys and antikeys. Acta Cybern. 7(4), 361–371 (1986)
41. Toman, D., Weddell, G.E.: On keys and functional dependencies as first-class cit-

izens in description logics. J. Autom. Reason. 40(2–3), 117–132 (2008)
42. Trinh, T.: Using transversals for discovering XML functional dependencies. In:

Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 199–
218. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77684-0 15

43. Wei, Z., Link, S.: Discovering embedded uniqueness constraints (2018, to appear)
44. Wei, Z., Link, S.: DataProf: semantic profiling for iterative data cleansing and

business rule acquisition. In: SIGMOD (2018, to appear)
45. Wei, Z., Link, S., Liu, J.: Contextual keys. In: Mayr, H.C., Guizzardi, G., Ma, H.,

Pastor, O. (eds.) ER 2017. LNCS, vol. 10650, pp. 266–279. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69904-2 22

46. Wijsen, J.: A survey of the data complexity of consistent query answering under
key constraints. In: Beierle, C., Meghini, C. (eds.) FoIKS 2014. LNCS, vol. 8367,
pp. 62–78. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04939-7 2

https://doi.org/10.1007/978-3-642-69956-6
https://doi.org/10.1007/978-3-540-77684-0_12
https://doi.org/10.1007/978-3-540-77684-0_12
https://doi.org/10.1007/978-3-540-77684-0_15
https://doi.org/10.1007/978-3-319-69904-2_22
https://doi.org/10.1007/978-3-319-04939-7_2

Regular Articles

Concatenation, Separation, and Other
Properties of Variably Polyadic Relations

Heba Aamer1(B) and Haythem O. Ismail1,2

1 Department of Computer Science, German University in Cairo, Cairo, Egypt
{heba.aamer,haythem.ismail}@guc.edu.eg

2 Department of Engineering Mathematics, Cairo University, Cairo, Egypt

Abstract. The standard model of relations as sets of k-tuples, though
well-suited to mathematical discourse, has been criticized as being nei-
ther flexible nor natural for commonsense reasoning. The interpretation
of predicates in first-order logic is classically limited to the standard
model of relations, which makes first-order representation and reason-
ing conceptually simple, but sometimes far from natural and much less
parsimonious when compared to, say, natural language predication. We
address these issues by considering a model of relations as sets of variable-
length tuples, and by introducing a first-order language where predica-
tion is interpreted using said model. Allowing relations to be of variable
adicity, introduces new properties that do not make sense in the standard
model. By investigating the interaction among these properties, we are
lead to efficient, sound, and (sometimes) complete analytical inference
mechanisms for the proposed language.

Keywords: Variably polyadic relations · Covered relations
Multigrade predicates · Closure · Reasoning

1 Introduction

According to the standard model of relations as sets of k-tuples, relations are
construed as having a fixed number of ordered argument places, each filled by
a single entity [13]. Despite the relative simplicity of logical languages which
respect this view, e.g. classical first-order logic, the standard model has long
been criticized both on philosophical and logical grounds [6,11,12,15,21]. One
of the main motivations for criticism is that the model bans relations with vari-
able adicity. While banning variable adicity might be tolerated in mathematical
discourse, such is not the case in commonsense situations, where at least two
objections are typically raised. The first is based on the apparently unbounded
number of arguments that action verbs admit [4,10]. This may be attested to
by examples such as the following Kenny-sequence, where not only do the argu-
ments vary in number, but they also vary in the roles they play even if they
have the same number (cf. (1c) and (1d)).

c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 17–33, 2018.
https://doi.org/10.1007/978-3-319-90050-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_2&domain=pdf

18 H. Aamer and H. O. Ismail

(1) a. Brutus killed Caesar.
b. Brutus killed Caesar with a knife.
c. Brutus killed Caesar with a knife at noon.
d. Brutus killed Caesar with a knife at Pompey’s theater.

This classical objection has well-known classical responses [4,16]. But such
responses cannot address the second objection which is based on the observation
that some examples, not involving actions, appear to include variably-polyadic
relations [14,15]. For example, the relations of being sisters, living together,
cooking dinner, or being relatively-prime intuitively exhibit variable adicity:

(2) a. Sue and Molly are sisters.
b. Sue, Molly, and Sally are sisters.
c. Dilip and Gyorgy live together.
d. Dilip, Gyorgy, and Omar live together.
e. Dave cooked dinner.
f. Dave and Tori cooked dinner.
g. 10 and 21 are relatively prime.
h. 6, 10, and 15 are relatively prime.

Although sequences (1) and (2) both provide evidence against the standard
model of relations, they do so differently. Whereas sequence (1) alludes to the
unbounded number of roles that arguments of a predicate may play, sequence (2),
while maintaining a fixed number of roles, suggests that an unbounded number of
individuals may play (what intuitively is) the same role. Consequently, sentences
like those in (2) are susceptible to distributive/collective ambiguities.

With such data, logicians and knowledge engineers are faced with serious
questions about the proper treatment of predication. To be faithful to the stan-
dard view, they should, for example, distinguish the relation of two women’s
being sisters from the relation of three women’s being sisters, hence employing
two predicate symbols, a binary sisters2 and a ternary sisters3, respectively. Alter-
natively, less laborious approaches to some of the questions raised by (1) and
(2) have been proposed, alluding to logics of plurals [14,15], logics with flexible
predicates [21], or logics with “set arguments” [19,20].

Covered relations [9] present a new flexible model of relations as structured
sets of structured tuples. It is a variably polyvalent, polyadic model, where poly-
valency refers to the variable number of roles, while polyadicity refers to the
variable number of entities playing each role. In this case, covered relations act
as a general framework that addresses the two main objections to classical rela-
tions. In this paper, we are primarily interested in certain inference patterns
peculiar to a first-order language in which predicates are interpreted as covered
relations. Without any loss of generality, and with a considerable simplification
of the exposition, we only consider variably (univalent) polyadic (henceforth,
VP) relations.

In Sect. 2, definitions of properties of VP relations and proofs of interactions
among them are presented. In Sect. 3, we discuss a first-order language where

Concatenation, Separation, and Other Properties of VP Relations 19

each predicate is associated with a decoration set. This set reflects properties of
the VP relation denoted by the predicate. Section 4 presents efficient inference
mechanisms for reasoning about VP relations with various properties in the given
language. Such mechanisms are proven to be sound and (sometimes) complete.

1.1 Terminology

Henceforth, unless otherwise stated, a relation is univalent and VP: A relation R
is a set of non-empty tuples (of possibly varying lengths) over some domain D. R
is k↑-adic if k = min{|t||t ∈ R}. Likewise, R is k↓-adic if {|t||t ∈ R} is finite and
k = max{|t||t ∈ R}. If R is l↑-adic and u↓-adic, then arity(R) = [l, u]∩N. If the
u↓-adicity is undefined, then arity(R) = [l,∞[∩N. If l = u = k, R is a classical k-
adic relation. For a tuple t, ti denotes the element at index i in t, where indices are
1-based. For any two indices i, j, if 1 ≤ i ≤ j ≤ |t|, then subseq(t)j

i = (ti, · · · , tj);
otherwise, subseq(t)j

i = (). ⊕ denotes the tuple-appending operator: t ⊕ t′ = t̃,
where |t̃| = |t| + |t′|, subseq(t̃)|t|

1 = t, and subseq(t̃)|t′|+|t|
1+|t| = t′. The empty

tuple () is the neutral element of ⊕. reverse(t) is the result of reversing t:
reverse(t) = t′, with t′i = t|t|−i+1 for every 1 ≤ i ≤ |t|. Likewise, rotate(t)r is
the result of rotating t r steps to the right: rotate(t)r = subseq(t)|t|

|t|−(r%|t|)+1⊕
subseq(t)|t|−(r%|t|)

1 . The set {rotate(t)r|1 ≤ r ≤ |t|} of all rotations of a tuple t
is denoted by rotations(t). If ti = t′j , then t and t′ are (i, j)-concatenable and

t i◦jt
′ = subseq(t)i

1 ⊕ subseq(t′)|t′|
j+1.

2 Properties of Variably Polyadic Relations

A relational property which is well understood in the dyadic case is that of
symmetry, indicating the insignificance of the order of elements in pairs of the
relation. Considering general VP relations, however, uncovers a rich variety of
permutability properties [9]. The strongest such property holds if the relation is
closed under all permutations of its tuples. We reserve the term “symmetric”
for this strong property (cf. [2]). Symmetric VP relations are very common,
including equivalence relations and the family of relations of the “co-predicates”
mentioned in [15]. Special cases of the permutable relations are those which are
rotary or reversible.

Definition 1. Let R be a relation.

– R is rotary if and only if, for every tuple t ∈ R, rotations(t) ⊆ R.
– R is reversible if and only if, for every tuple t ∈ R, reverse(t) ∈ R.

An example of a relation which is both rotary and reversible, but not sym-
metric, is the simple-polygon relation defined over tuples of points. (Simple poly-
gons are polygons that do not intersect themselves.) If t = (p1, p2, p3, p4) forms
a simple polygon, rotating or reversing t still forms a simple polygon, but an

20 H. Aamer and H. O. Ismail

arbitrary permutation thereof, e.g. (p2, p3, p1, p4), need not. Similarity relations
are reversible but not rotary.

While permutability properties are valid for k-adic relations and are not
distinctive of variable polyadicity, separability and expandability properties are
peculiar to the VP case.

Definition 2. Let R be a relation.

– R is separable if, for every tuple t ∈ R and every m ∈ arity(R) with m < |t|,
R contains every size-m contiguous sub-sequence of t.

– R is expandable if, for every tuple t ∈ R and every m ∈ arity(R) with
m > |t|, R contains every tuple of size m, of which |t| is a size-t contiguous
sub-sequence.

Let St be the relation that holds of a sequence of two or more train stations
if there is a train which passes by them in the given order. For example, sup-
pose that t = (s1, s2, s3) ∈ St. This means that there is a train which passes
by station s1 then s2 then s3. Evidently, the same train passes by any size-2,
contiguous sub-sequence of t, making St separable. An example of an expand-
able relation is the symmetric relation Incons which holds of tuples of logical
clauses which are (classically) inconsistent. Incons is evidently expandable due
to the monotonicity of classical logic. (Likewise, the relations of sisterhood and
relative-primacy from Sect. 1 are examples of symmetric relations which are,
respectively, separable and expandable.)

Another interesting property characteristic of VP relations is concatenability.

Definition 3. Let R be a relation. R is concatenable if and only if, for every
(i, j)-concatenable t and t′ in R, t i◦jt

′ ∈ R.

Similarity, for example, is a concatenable (though not transitive) relation.
Another example is the relation Alt = {t| for 1 < i ≤ |t|, ti > 0 if ti−1 <
0, otherwise ti < 0} of sign-alternating tuples of integers. (This relation is
also separable and reversible.) If the (3, 1)-concatenable tuples (1,−2, 3,−4) and
(3,−1, 2) are in Alt, then so is their concatenation (1,−2, 3,−1, 2).

Note 1. The definition presented for concatenable relations is pervasive. The def-
inition has no restriction on the length of the tuples unlike separable or expand-
able relations. In separable or expandable relations, the property is dependent
on the arity of the relation. However, this is not the case with concatenable
relations.

Example 1 ((Non-)Concatenable Relation). Let R be a relation with 3 ∈
arity(R), and {(1, 2, 3), (3, 4, 5)} ⊆ R. R is not a concatenable relation accord-
ing to the definition, in case {(1, 2, 3, 4, 5), (3)} 	⊆ R. So if R is concatenable,
then it must be the case that {1, 5} ⊂ arity(R).

In the rest of this section, we make some observations about interesting inter-
dependencies among the presented relational properties. We say that a relation
R on domain D is trivial if it is either empty or contains every tuple of elements
of D with length in arity(R).

Concatenation, Separation, and Other Properties of VP Relations 21

Observation 1. If a relation R is expandable and concatenable, then it is
trivial.

Proof. Suppose that R is a non-trivial relation. Thus, there are two tuples t
and t′ of elements of D such that t /∈ R, with |t| ∈ arity(R), and t′ ∈ R. Let
tl = (t1) ⊕ t′ and tr = t′ ⊕ t. Since R is expandable, then both tl and tr are in R.
Now, given that R is concatenable, and that tl and tr are (1, |t′|+1)-concatenable,
then tl 1◦(|t′|+1)t

r = subseq(tl)11 ⊕ subseq(tr)|tr|
|t′|+2 = (t1, · · · , t|t|) = t ∈ R.

Hence, a contradiction.

Proposition 1. If a relation R is concatenable and rotary, then it is separable.

Proof. Let t ∈ R and let s be a contiguous subsequence of t. Hence, there are
tuples l and r such that t = l ⊕ s ⊕ r. Since R is rotary, then the two rotations
(of t) t′ = s ⊕ r ⊕ l and t′′ = r ⊕ l ⊕ s are also in R. Evidently, t′|s| = t′′|t′′| =

s|s|. It follows from the concatenability of R that t′ |s|◦|t′′|t′′ = subseq(t′)|s|
1 ⊕

subseq(t′′)|t′′|
|t′′|+1 = s⊕() = s ∈ R. Thus, R is separable.

Lemma 1. If a relation R is rotary and concatenable, then, for every tuple
t ∈ R with |t| > 1, the set of pairs {(ti, tj)|1 ≤ i, j ≤ |t|} ⊆ R.

Proof. We prove the lemma by cases.
First, suppose that i 	= j. Hence, there are unique tuples l, r, and s such that

t′ = (tj) ⊕ l ⊕ (ti) ⊕ r and t′′ = s ⊕ (ti) are rotations of t. (Intuitively, t′ is the
rotation that starts with tj, while t′′ is the one that ends with ti.) Since R is
rotary, then it contains both t′ and t′′. Moreover, from the concatenability of R,
and ti’s being a common element of t′ and t′′, t̃ = t′ |l|+2◦|t′′|t′′ = (tj)⊕ l⊕ (ti) ∈
R. Again from the rotary property of R, the rotation (ti, tj) ⊕ l of t̃ is also in R.
Since R is separable (from Proposition 1), it follows that (ti, tj) ∈ R.

Now, suppose that i = j. Hence, there is a unique, non-empty tuple s such
that t′ = (ti) ⊕ s is the rotation of t that starts with ti and t′′ = s ⊕ (ti) is
the rotation that ends with ti. Since R is rotary, then R contains both t′ and
t′′. Further, from the concatenability of R, and since the last element in s is
common in t′ and t′′, then t̃ = t′ |t|◦|s|t′′ = (ti) ⊕ s ⊕ (ti) ∈ R. Again from the
rotary property, (ti, ti)⊕ s, which is a rotation of t̃, belongs to R. It follows from
the separability of R that (ti, ti) ∈ R.

Proposition 2. If a relation R is rotary and concatenable, then it is symmetric.

Proof (Proof Idea). Let t ∈ R, with |t| > 1, and let t′ be some permutation of
t. By Lemma 1, {(t′i, t

′
i+1)|1 ≤ i < |t′|} ⊆ R. Given the concatenability of R,

(t′1, t
′
2) ◦ [(t′2, t

′
3) ◦ [· · · ◦ (t′|t′|−1, t

′
|t′|) · · ·]] = t′ ∈ R.1 Hence, R is symmetric.

Observation 2. A concatenable relation R is 1↑-adic, if

1 Here we use square brackets for grouping.

22 H. Aamer and H. O. Ismail

1. R is reversible, or
2. R is separable and |arity(R)| > 1.

Proof. Suppose that R is concatenable.

1. Let t ∈ R. Since R is reversible, then t′ = reverse(t) ∈ R. Further, given
that R is concatenable, and t and t′ are (|t|, 1)-concatenable, then t |t|◦1t′ =
(t|t|) ∈ R. Hence, R must be 1↑-adic.

2. Let R be l↑-adic and assume that l > 1. Since |arity(R)| > 1, there
must be some t ∈ R with |t| > l. Hence, |t| ≥ 3. From the separabil-
ity of R, t′ = subseql+1

2 (t) and t′′ = subseql
1(t) both belong to R. Fur-

ther, since R is concatenable, and t′ and t′′ are (1, 2)-concatenable, then
t′ 1◦2 t′′ = (t2, · · · , tl) ∈ R. But then |(t2, · · · , tl)| = (l − 1) ≥ l. Hence,
a contradiction. So it must be that l ≤ 1. Since l > 0, then l = 1.

The following definitions and observation will prove useful when presenting
later proofs.

Definition 4. A tuple expression over a set of tuples S is an expression which
has one of the following forms, where t ∈ S, a and b are tuple expressions over
S, and i, j ∈ N:

1. t;
2. (a, b, i◦j);
3. (a, subseqj

i); or
4. (a, reverse).

If a tuple expression is of the form 1, 2, or 3, then it is a non-reversible
expression; if it is of the form 1, 2, or 4, then it is a non-separable expres-
sion; if it is both non-reversible and non-separable, then it is a concatenation-
only expression.

To each tuple expression, we associate a degree of concatenation and a value.

Definition 5. If e is a tuple expression, then the degree of concatenation of
e, denoted D(e), is a natural number inductively defined as follows:

1. D(t) = 0.
2. D((a, b, i◦j)) = D(a) + D(b) + 1.
3. D((a, subseqj

i)) = D(a).
4. D((a, reverse)) = D(a).

Definition 6. If e is a tuple expression, then the value of e, denoted �[e], is a
tuple which is recursively defined as follows:

1. �[t] = t.
2. �[(a, b, i◦j)] = (�[a] i◦j � [b]), if �[a] and �[b] are defined and are (i, j)-

concatenable; otherwise, it is undefined.

Concatenation, Separation, and Other Properties of VP Relations 23

3. �[(a, subseqj
i)] = subseq(�[a])j

i , if �[a] is defined and 1 ≤ i ≤ j ≤ | � [a]|;
otherwise, it is undefined.

4. �[(a, reverse)] = reverse(�[a]), if �[a] is defined; otherwise, it is undefined.

If e1 and e2 are tuple expressions, we write e1 ≡ e2 whenever �[e1] = �[e2].

Example 2. Let t = (1, 2, 3, 4), and t′ = (5, 3, 6, 7). If e = (t′, (t, reverse), 2◦2),
then �[e] = (5, 3, 2, 1).

�[e] = �[(t′, (t, reverse), 2◦2)]
= (�[t′]) 2◦2(�[(t, reverse)])
= (�[t′]) 2◦2(reverse(�[t]))
= (�[t′]) 2◦2(reverse((1, 2, 3, 4)))
= (5, 3, 6, 7) 2◦2(4, 3, 2, 1)
= (5, 3, 2, 1)

Using tuple expressions, we can easily make the following observations about
tuple operations.

Observation 3. Let a and b be tuple expressions.

1. ((a, reverse), reverse) ≡ a.
2. Provided that k ≤ l ≤ j − i + 1, ((a, subseqj

i), subseq
l
k) ≡ (a, subseqi+l−1

i+k−1).
3. ((a, subseqj

i), reverse) ≡ ((a, reverse), subseql−i+1
l−j+1), where l = | � [a]|.

4. ((a, b, i◦j), reverse) ≡ ((b, reverse), (a, reverse), k◦l), where k = | � [b]| −
j + 1, and l = | � [a]| − i + 1.

5. Provided that values of all sub-expressions are defined, ((a, subseqj
i),

(b, subseqr
l), x◦y) ≡ ((a, b, m◦k), subseqr−k+m

i), where m = i + x − 1, and
k = l + y − 1.

The following result, though intuitive, is important to be explicitly stated
if inductive arguments on the structure of concatenation operations are to be
accepted. Intuitively, a tuple t is the result of a sequence of concatenations over
a set of tuples S if t ∈ Sω where:

– S0 = S,
– For every ordinal α, Sα = S<α ∪ {t i◦jt

′|t, t′ ∈ S<α and t and t′

are (i, j)-concatenable tuples},
– S<α =

⋃
β<α Sβ , and

– Sω =
⋃∞

α Sα.

Proposition 3. Let t be a tuple. If t is the result of a sequence of concatenations
over a set of tuples S, then there is a (finite) concatenation-only expression e
over S with �[e] = t.

Proof (Proof Sketch). The proof consists of two parts:

– Proving that there is a concatenation-only expression e′ over a set of tuples
S ′ with �[e′] = t.

– Proving that S ′ ⊆ S and, hence, that e can be taken to be e′.

24 H. Aamer and H. O. Ismail

Part 1. Suppose that ts = (t1)⊕ r0 and te = l|t| ⊕ (t|t|). Further, for 1 ≤ i < |t|,
ti = li ⊕(ti, ti+1)⊕ri. Evidently, ti and ti+1 are (|li|+2, |li+1|+1)-concatenable.
Moreover, ts and t1 are (1, |l1| + 1)-concatenable and t|t|−1 and te are (|l|t|−1| +
2, |te|)-concatenable. To construct e′, we recursively construct sub-expressions
thereof. Let (e1, · · · , e|t|) be a sequence of concatenation-only expressions (with
D(ei) = i) defined as:

– e1 = (ts, t1, 1◦|l1|+1). Thus, �[e1] = (t1, t2) ⊕ r1.
– For 1 < i < |t|, let ei = (ei−1, ti, i◦|li|+1). Thus, �[ei] = (t1, · · · , ti+1) ⊕ ri.
– e|t| = (e|t|−1, te, |t|◦|te|). Thus, �[e|t|] = (t1, · · · , t|t|).

Taking e′ = e|t|, and S ′ = {{ts, te} ∪ {ti|1 ≤ i < |t|}}. Then, evidently, e′ is a
concatenation-only expression over S ′ with �[e′] = t.

Part 2. We need to prove that some choices of r0, · · · , r|t−1|, and l1, · · · , l|t|

exist such that S ′ ⊆ S. The proof of this part follows from the structure of the
concatenation operation and the existence of t. Recall that, provided that t′ and
t′′ are (i, j)-concatenable,

t′ i◦jt
′′ = subseq(t′)i

1 ⊕ subseq(t′′)|t′′|
j+1

Accordingly, the tuple resulting from concatenation must have the following
properties:

– It starts with the first element in t′.
– It ends with the last element in t′′.
– Every two consecutive elements in the result of the concatenation are origi-

nally either found in t′ or in t′′.

From the existence of t, we know that at least one tuple in S starts with t1.
Let that tuple be ts. Similarly, we will find a tuple representing te. Further, for
1 ≤ i < |t|, since ti and ti+1 exist in t consecutively, then there must be at least
one tuple in S that contains ti immediately followed by ti+1. Let that tuple be ti.
Thus, S ′ ⊆ S.

Example 3 (Infinite Sequence of Concatenations). Let t = (1, 2, 3) and t′ =
(3, 4, 5) ∈ S. If t̃ = [[[[[t 3◦1t′] 5◦3t′] 5◦3t′] 5◦3t′] · · ·], then t̃ is the result of an
infinite sequence of concatenations over S with t̃ = (1, 2, 3, 4, 5).

Following Proposition 3, one possible concatenation-only expression e over S
with �[e] = t̃ is (((((t, t, 1◦2), t, 2◦3), t′, 3◦1), t′, 4◦2), t′, 5◦3).

3 Representing Variably Polyadic Relations

In this section, we describe the syntax and semantics of a language LVP for rep-
resenting and reasoning about VP relations. LVP is a usual first order language,
but with decorated, multigrade predicates. It is a relatively simple fragment of
the language presented in [9], where the simplicity is afforded by restricting
ourselves to univalent relations.

Concatenation, Separation, and Other Properties of VP Relations 25

Definition 7. An LVP predication structure is a quadruple P = 〈P, �·�, �·�,D〉,
where:

1. P is an alphabet, whose symbols are referred to as predicates.
2. �·� : P → N, is a function that maps a predicate symbol to its minimum arity.
3. �·� : P ⇀ N, is a partial function which maps a predicate symbol to its maxi-

mum arity, if there is a maximum.
4. D : P → 2{�,↔,⇑,⇓,��,
}, where D(P) is referred to as the decoration of predi-

cate symbol P .

Definition 8. Let P be a predication structure and D a non-empty set. For
P ∈ P, the interpretation �P �

D of P is a relation R on D, where:

1. R is k↑-adic with k = �P �
2. R is k↓-adic with k = �P �, if �P � is defined
3. for every d ∈ D(P), if d is ⇓ (⇑,�,↔, ��,�), then R is separable (respectively

expandable, rotary, reversible, symmetric, concatenable).

In what follows, let V be a countably-infinite set of variables and F a finite set
of function symbols each with an associated arity. (As usual, arities are indicated
by superscripts; f0 ∈ F is referred to as a constant.) The set of terms is defined
as usual.

Definition 9. Let P = 〈P, �·�, �·�,D〉 a predication structure. An 〈V,F ,P〉-
generated atomic formula is a formula of the form

P (τ1, τ2, . . . , τn)

where P ∈ P, τi is a term, for every 1 ≤ i ≤ n, and �P � ≤ n ≤ �P �.
As usual, given an interpretation of the predicates in an LVP predication

structure, an atomic formula P (τ1, τ2, . . . , τn), where P is a predicate and
τ1, τ2, . . . , τn are terms, is true just in case (�τ1�

D
, �τ2�

D
, . . . , �τn�

D) ∈ �P �
D.

For example, consider representing the relation Alt of finite, sign-alternating
sequences of integers (see Sect. 2). We construct a predication structure with a
predicate alternate ∈ P such that:

– D(alternate) = {⇓,�,↔},
– �alternate� = 1, and
– �alternate� is undefined.

Now, if an LVP theory includes the following atomic sentences:

– alternate(5,−2, 1,−5, 4,−1), and
– alternate(−1, 1,−3).

Then, given the decoration of alternate, a proof theory for LVP should allow
us to infer, for example, the following atoms:

26 H. Aamer and H. O. Ismail

– alternate(−1, 1,−5, 4),
– alternate(1,−5),
– alternate(−3, 1,−1), and
– alternate(1,−1, 4).

To that end, specialized inference rules for each decoration symbol should
be incorporated in our proof theory. One way to efficiently achieve this is to
heed Shapiro’s advice to implement the inference rules as part of a unification
algorithm [20].2 Although we do not present a complete unification algorithm
for LVP here, we describe algorithms which provide the base cases for such an
algorithm.

4 Reasoning About Closures

Intuitively, the problem we address is the following: Given a set of atoms with
predicate P , which other P -atoms should we infer given the decoration of P?
To make this more precise, we introduce some handy notation and terminology.
Henceforth, we assume P to be a predicate of some LVP predication structure.
We say that (τ1, . . . , τn) is a P -tuple, if �P � ≤ n ≤ �P � and τi is a ground
term for every 1 ≤ i ≤ n. If A is a set of P -tuples, then �A� = {�τ�|τ ∈
A}, where �τ� = (�τ1�, . . . , �τn�) if τ = (τ1, . . . , τn). Similar to the classical
closures of dyadic relations with respect to common properties such as reflexivity,
symmetry, and transitivity, let �A�∗ be the closure of �A� with respect to the
properties corresponding to D(P). For example, if D(P) = {↔,⇑}, then �A�∗

is the reversible, expandable closure of �A�. Similarly, we define A∗ = {τ |�τ� ∈
�A�∗}. Our problem can now be stated as follows.

Problem 1: VP Closure (VPClos)
Instance: A predicate P ;

a set A of P -tuples;
a P -tuple τ

Question: Is τ ∈ A∗?

The complexity of deciding VPClos varies with the instance, depending on
D(P). In this paper, we are only interested in instances in which the represented
relation is concatenable (i.e., � ∈ D(P)). The reason is that all other prop-
erties (except symmetry and concatenation), and combinations thereof, yield
sub-problems that can be decided by simple variations of common string match-
ing algorithms [3,7,8]. Symmetry with other properties can be done efficiently
using set operations [17]. Concatenation, however, does not reduce to simple
matching: We need to check if �τ� can be constructed by concatenating two
or more tuples in �A�. The problem becomes more complex when we consider
combining concatenability with other properties.

2 In [20] (also in [19]), Shapiro is interested in special cases of what we refer to as
symmetric and separable relations.

Concatenation, Separation, and Other Properties of VP Relations 27

Focusing only on concatenable relations, leaves us with thirty two possibilities
for D(P). However, given the results of Sect. 2, these reduce to only five non-
trivial cases: {�}, {↔,�}, {⇓,�}, {↔,⇓,�}, and {�,↔,⇓, ��,�}. Of these, we
only discuss the first four in detail.

Remark 1. Given the strong properties it exhibits, the fifth case can be
accounted for by noting that: (i) due to symmetry, tuples can be replaced by
multisets; (ii) due to concatenability, the collection of multisets can be parti-
tioned into blocks corresponding to the connected components of the intersec-
tion graph whose nodes are the multisets [5]; and (iii) due to separability, the
VPClos question can be answered by checking if the query τ is a subset of the
union of the multisets in one of the blocks. This can be efficiently implemented
using a disjoint-sets data structure with a union-find algorithm [18].

For the remaining cases, we note that �A�∗ can be characterized in terms of
the tuple expressions of Sect. 2. In particular, in each case, �A�∗ = �[E], where
E is a set of tuple expressions over �A� and �[E] is the set of corresponding
tuples in D (if defined) values thereof.

1. If D(P) = {�}, then E is the set of concatenation-only expressions.
2. If D(P) = {↔,�}, then E is the set of non-separable expressions.
3. If D(P) = {⇓,�} and �P � 	= �P �, then E is the set of non-reversible expres-

sions (cf. Observation 2).
4. If D(P) = {↔,⇓,�} and �P � 	= �P �, then E is the set of all (unconstrained)

expressions.

It is notable that when D(P) = {⇓,�} and �P � = �P �, then �[E] = �[F],
where E is the set of concatenation-only expressions over �A� and F is the set
of non-reversible expressions over �A�. It is easy to show that if f ∈ F, then
(f, subseq j

i) is only valid for i = 1 and j = �P � = | � [f]|. Consequently,
(f, subseq j

i) ≡ f. So this case reduces to case 1. By a similar argument, the
case of D(P) = {↔,⇓,�} and �P � = �P � reduces to case 2.

4.1 Concatenable-Only Relations

We first consider relations which are only concatenable; syntactically, D(P) =
{�}. Our solution to such instances of VPClos is based on a data structure
which we call the concatenation graph.3

Definition 10. Let A be a set of P -tuples. The concatenation graph of A,
denoted CG(A), is a quadruple G = 〈N , E , S, E〉 where

– N = {τi|τ ∈ A and 1 ≤ i ≤ |τ |} is the set of nodes,
– E is the set of edges with (u, v) ∈ E iff there is some τ ∈ A with τi = u, and

τi+1 = v for 1 ≤ i < |τ |,

3 Though designed with a different construction and for a totally different purpose,
concatenation graphs somewhat resemble the directed acyclic word graphs of [1].

28 H. Aamer and H. O. Ismail

– S ⊆ N is the set of S-nodes (start nodes) with u ∈ S iff there is some τ ∈ A
with τ1 = u, and

– E ⊆ N is the set of E-nodes (end nodes) with u ∈ E iff there is some τ ∈ A
with τ|τ | = u.

Figure 1 shows a set of P -tuples and the corresponding concatenation graph.

A = {(1, 2, 3, 4, 5, 6), (7, 8, 5, 6, 9, 10, 11, 12), (13, 11, 1)}
1 2 3 4 5

11 91012

13

8 76

Fig. 1. A set A of P -tuples and CG(A). Nodes with an arrow coming in from nowhere
are S-nodes; double-circled nodes are E-nodes

The link between LVP syntax and semantics is established by the notion of
a C-path in CG(A)

Definition 11. A C-Path in CG(A) is a directed path starting with an
S-node and ending with an E-node. If p = (p1, . . . , pn) is a C-path and
t = (�p1�, �p2�, ..., �pn�), we say that p is a C-path of t.

We now prove the following soundness result.

Theorem 1. Let A be a set of P -tuples. If there is a C-path p in CG(A), then
there is a concatenation-only expression e over �A�, such that p is a C-path of
�[e].

Proof. We prove the existence of e by construction.4 Let p = (p1, . . . , pm). By
Definition 11, p1 is an S-node, pm is an E-node, and there is an edge from pi

to pi+1 for every 1 ≤ i < m. From the construction of G, there is some τs ∈ A
with τs

1 = p1 and some τe ∈ A with τe
|τe| = pm. Further, for every 1 ≤ i < m,

there is some τ i ∈ A with τ i
j = pi and τ i

j+1 = pi+1, for some 1 ≤ j < |τ i|.
(Intuitively, τ i is responsible for ith edge in p.) Now, let ts = �τs� and te = �τe�.
Further, for 1 ≤ i < m, let ti = �τ i� = li ⊕ (�pi�, �pi+1�) ⊕ ri. Evidently, ti and
ti+1 are (|li| + 2, |li+1| + 1)-concatenable. Moreover, ts and t1 are (1, |l1| + 1)-
concatenable and tm−1 and te are (|lm−1| + 2, |te|)-concatenable. To construct e,
we recursively construct sub-expressions thereof. Let (e1, · · · , em) be a sequence
of concatenation-only expressions (with D(ei) = i) defined as:

– e1 = (ts, t1, 1◦|l1|+1). Thus, �[e1] = (�p1�, �p2�) ⊕ r1.
– For 1 < i < m, ei = (ei−1, ti, i◦|li|+1). Thus, �[ei] = (�p1�, · · · , �pi+1�) ⊕ ri.
– em = (em−1, te, m◦|te|). Thus, �[em] = (�p1�, · · · , �pm�).

4 The construction of e is similar to the one used in proving Proposition 3.

Concatenation, Separation, and Other Properties of VP Relations 29

Taking e = em, then, evidently, e is a concatenation-only expression over �A�
with p a C-path of �[e].

A corresponding completeness result can only be secured by making the
unique names assumption (�τ� = �τ ′� implies τ = τ ′.) At the cost of our rather
simple construction, we can relax the unique names assumption and retain com-
pleteness by taking the nodes of concatenation graphs to be, not terms, but
equivalence classes thereof. We stand by simplicity though.

Theorem 2. Let A be a set of P -tuples such that, for every τ, τ ′ ∈ A, if �τ� =
�τ ′� then τ = τ ′. If e is a concatenation-only expression over �A� with �[e]
defined, then there is a C-path of �[e] in CG(A).

Proof. We prove the theorem by strong induction on D(e).5

Basis. Suppose that D(e) = 0. Thus, there is some t ∈ �A� such that e = t =
�[e]. By definition of concatenation graphs, there is a C-path of t in CG(A).
Induction Hypothesis. For some 0 < k ∈ N, if e is a concatenation-only
expression over �A� with D(e) < k and with �[e] defined, then there is a C-path
of �[e] in CG(A).
Induction Step. Let e be a concatenation-only expression over �A� with
D(e) = k. Since k > 0, then e = (a, b, i◦j), where a and b are concatenation-
only expressions with k = 1 + D(a) + D(b). By the induction hypothesis,
t′ = �[a] and t′′ = �[b] have C-paths in CG(A), say p′ and p′′, respectively.
Let t = �[e] = t′ i◦jt

′′ = subseq(t′)i
1 ⊕ subseq(t′′)|t′′|

j+1. If subseq(t′′)|t′′|
j+1 = (),

then t = t′ and p′ is a C-path of t. Hence, considering subseq(t′′)|t′′|
j+1 	= (),

t = (t′1, · · · , t′i, t
′′
j+1, · · · , t′′|t′′|). Given that p′ and p′′ are C-paths, it follows that p′

1

is an S-node and p′′
|t′′| is an E-node. Moreover, by the unique names assumption,

p′
i = p′′

j . Hence, the sequence p = (p′
1, . . . , p

′
i, p

′′
j+1, . . . , p

′′
|t′′|) is a concatenation

path in CG(A). But tl = �pl�, for 1 ≤ l ≤ |p|. Thus, p is a C-path of t.

According to the results just presented, a simple algorithm for VPClos
checks whether the query τ is a C-path in CG(A). The time and space com-
plexity of the algorithm are both determined by the concatenation graph and
the length of the query tuple. In particular, both are O(|〈A〉|+ |τ |) (where 〈A〉 is
the string encoding of A). To achieve this complexity, one possible model of the
concatenation graph is using a hash-table of hash-tables of nodes. So it takes
constant time to add an edge to the graph and to check for the existence of
edges. This complexity is linear in the size of the input, which, though theo-
retically good, may be prohibitive for large graphs. Luckily, however, the graph
is constructed only once in practice, and successive queries can be answered in
time which is only Θ(|τ |). This is typically optimal since we get to, at least, read
the input query.

5 That this suffices to prove completeness relies on the finite-representation property
of concatenation proved in Proposition 3.

30 H. Aamer and H. O. Ismail

4.2 Reversible Concatenable Relations

We now consider instances of VPClos in which the represented relation is only
reversible and concatenable; syntactically, D(P) = {↔,�}. Thus, �A�∗ is a set
of values of non-separable tuple expressions over A.

Lemma 2. If A is a set of P -tuples with D(P) = {↔,�}, then �A�∗ = �A↔�∗,
where A↔ = A ∪ {reverse(τ)|τ ∈ A}.
Proof (Proof Sketch). From the fourth clause of Observation 3, a non-separable
tuple expression e is equivalent to a non-separable expression with the reverses
pushed all the way inside. Intuitively, we can do all the reversing before all con-
catenations. Further, from the first clause of Observation 3, such an expression
is equivalent to one with no two consecutive reverses. Thus, if E is the set of
non-separable tuple expressions over �A�, then each expression in E has an equiv-
alent expression in F ⊂ E, where F is the smallest set satisfying the following
(with t ∈ �A�):

1. If t ∈ E, then t ∈ F.
2. If (t, reverse) ∈ E, then (t, reverse) ∈ F.
3. If e1, e2 ∈ F, then (e1, e2, i◦j) ∈ F, for every i and j such that �[e1]i = �[e2]j.

Thus, �A�∗ = �[F]. But it is clear that �[F] = �[F↔], where F↔ is identical
to F with every (sub-)expression of the form (t, reverse) replaced by the tuple
reverse(t). Referring to Observation 3 again, �[F↔] = �[E↔], where E↔ is the
set of non-separable tuple expressions over �A↔�. It follows that �A�∗ = �[E] =
�[F] = �[F↔] = �[E↔] = �A↔�∗.

It is important to note that, in the above proof, the set F↔ is a set of
concatenation-only expressions. Thus, we can reproduce the soundness and com-
pleteness results of the previous section by working with A↔ rather than A.

Theorem 3. Let A be a set of P -tuples with A↔ as defined in Lemma 2.

1. If there is a C-path p in CG(A↔), then there is a non-separable expression e
over �A� such that p is a C-path of �[e].

2. If, for every τ, τ ′ ∈ A, �τ� = �τ ′� implies τ = τ ′ and e is a non-separable
expression over �A� with �[e] defined, then there is a C-path of �[e] in
CG(A↔).

Proof. The proof follows directly from Lemma 2, Theorems 1 and 2.

The VPClos-algorithm for the concatenable-only case can, thus, be readily
extended to the reversible-concatenable case but with CG(A↔) as the concate-
nation graph. CG(A↔) has the following interesting properties. First, if there is
an edge from u to v, then there is an edge from v to u. Second, the S-nodes and
the E-nodes are identical. Hence, CG(A↔) can be replaced by the underlying
undirected graph of CG(A) which is identical in size to CG(A).

Concatenation, Separation, and Other Properties of VP Relations 31

4.3 Separable Concatenable Relations

In this section we consider relations R which are concatenable and separable
(and possibly reversible) but not symmetric with arity(R) > 1; syntactically,
{⇓,�} ⊆ D(P) ⊆ {↔,⇓,�} and �P � 	= �P �. Thus, �A�∗ is the set of values
of tuple expressions over �A� which are either non-reversible or totally uncon-
strained.

Lemma 3. If A is a set of P -tuples with {⇓,�} ⊆ D(P) ⊆ {↔,⇓,�} and
�P � 	= �P �, then �A�∗ = �A⇓�∗, where A⇓ = A ∪ {(τi)|τ ∈ A and 1 ≤ i ≤ |τ |}.
Proof (Proof Sketch). By Clauses 3 and 5 of Observation 3, a tuple expression
is equivalent to one in which we pull all subseqs all the way outside. Further,
Clause 2 indicates that a sequence of subseqs reduces to a single one. Thus, if
E is the set of non-reversible or unconstrained expressions over �A�, then every
expression in E has an equivalent expression in F ⊂ E, where F is the smallest
set satisfying the following condition: If e is a non-separable expression in E then
e and (e, subseqj

i), for every 1 ≤ i ≤ j ≤ | � [e]|, are in F. (Intuitively F is the
set of tuple expressions equivalent to the ones in E with all subseqs pulled all
the way outside and reduced to single one if more than one is in the expression.)
Thus, �A�∗ = �[F]6. Hence, it suffices to show that �[F] = �A⇓�∗.

First, we note that if e is a non-separable expression, then t =
�[(e, subseqj

i)] = [(ti) 1◦i [�[e] j◦1(tj)]] = �[((ti), (e, (tj), j◦1), 1◦i)]. Thus,
�[F] = �[F⇓], where F⇓ is the smallest set of expressions satisfying the following:

1. If e ∈ F is a non-separable expression, then e ∈ F⇓.
2. If t ∈ F is a tuple, then {(ti)|1 ≤ i ≤ |t|} ⊂ F⇓. This follows from Observa-

tion 2.
3. If e1, e2 ∈ F⇓, then (e1, e2, i◦j) ∈ F⇓, for every i and j such that �[e1]i =

�[e2]j.

Referring to Observation 3 again, �[F⇓] = �[E⇓], where E⇓ is the set of non-
separable expressions over �A⇓�. It follows that �A�∗ = �[E] = �[F] = �[F⇓] =
�[E⇓] = �A⇓�∗.

Again, we note that F⇓ in the proof is a set of non-separable expressions.
Thus, we can employ the methods of Subsects. 4.1 and 4.2 to solve instances of
VPClos where the represented relation is separable and concatenable; we only
need to use CG(A⇓) instead of CG(A).

Theorem 4. Let A be a set of P -tuples with �P � 	= �P � and A⇓ as defined in
Lemma 3.

1. If there is a C-path p in CG(A⇓) (respectively, CG((A⇓)↔)), then there is a
non-reversible (respectively, unconstrained) expression e over �A� such that p
is a C-path of �[e].

6 That �[F] ⊆ �A�∗ follows from Observation 2.

32 H. Aamer and H. O. Ismail

2. If, for every τ, τ ′ ∈ A, �τ� = �τ ′� implies τ = τ ′ and e is a non-reversible
(respectively, unconstrained) expression over �A� with �[e] defined, then there
is a C-path of �[e] in CG(A⇓) (respectively, CG((A⇓)↔)).

Proof. The proof follows directly from Lemma 3 and Theorems 1, 2, and 3.

Since {⇓,�} ⊆ D(P) and �P � 	= �P �, it follows from Observation 2 that
�P � = 1. So tuples that consists of a single term are valid P -tuples. Thus,
S = E = N in CG(A⇓). Hence, searching for a C-path in CG(A⇓) reduces
to searching for any directed path in CG(A). Figure 2 displays the undirected
concatenation graph of the alternate-theory from Sect. 3, where D(alternate) =
{↔,⇓,�}. As predicted, (−1, 1,−5, 4), (1,−5), (−3, 1,−1), and (1,−1, 4) have
corresponding paths in the graph.

-1 1 -3

4 -5 -2 5

Fig. 2. The undirected concatenation graph for the set {(−1, 1,−3), (5,−2, 1,−5,
4,−1)} of alternate-tuples

5 Conclusion

Variably-polyadic relations are not very popular in logic-based artificial intel-
ligence. However, admitting them into a commonsense ontology is perhaps a
reasonable move. LVP is an example of a simple first-order language for repre-
senting and reasoning about VP relations. It is related to the language presented
in [21], but the latter lacks predicate decoration and is more complex due to the
inclusion of sequence variables. By considering properties which are peculiar to
VP relations, such as concatenation and separation, interesting reasoning prob-
lems emerge. We have described efficient inference algorithms for reasoning about
these properties, with the resulting proof theory being sound and (sometimes)
complete. A natural next step is to consider incorporating the algorithms pre-
sented here into a fully-fledged unification algorithm for LVP. Another challenge,
that is highlighted by Observation 2, is to revise the definition of concatenable
relations in order to allow having a length limit on the tuples that should belong
to the relation; thus giving priority to the length limits. One example motivating
this step, consider the relation of increasing tuples of integers. This relation is
not concatenable according to the definition presented in the paper. In case we
want to think of it as a concatenable relation, it follows from Observation 2 that
tuples of single elements must be in the relation. However, it is not very intuitive
to say that, for example, (1) is an increasing tuple of integers.

Acknowledgments. We thank three anonymous reviewers of FoIKS 2018, for point-
ing out their insightful remarks that certainly resulted in a more readable (and, at
places, more correct) paper.

Concatenation, Separation, and Other Properties of VP Relations 33

References

1. Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.:
The smallest automaton recognizing the subwords of a text. Theoret. Comput. Sci.
40, 31–55 (1985)

2. Cristea, I., Ştefănescu, M.: Hypergroups and n-ary relations. Eur. J. Comb. 31(3),
780–789 (2010)

3. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press Inc., New
York (1994)

4. Davidson, D.: The logical form of action sentences. In: Recher, N. (ed.) The Logic of
Decision and Action, pp. 81–95. University of Pittsburgh Press, Pittsburgh (1967)

5. Erdős, P., Goodman, A.W., Pósa, L.: The representation of a graph by set inter-
sections. Can. J. Math. 18(1), 106–112 (1966)

6. Fine, K.: Neutral relations. Philos. Rev. 109(1), 1–33 (2000)
7. Graham, S.: String Searching Algorithms, vol. 3. World Scientific, Singapore (1994)
8. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology. Cambridge University Press, Cambridge (1997)
9. Ismail, H.O.: Four remarks on relations and predication. In: Arazim, P., Lavicka,

T. (eds.) The Logica Yearbook 2016. College Publications, London (2017)
10. Kenny, A.: Action Emotion and Will. Routledge and Kegan Paul, London (1963)
11. Leo, J.: The identity of argument places. Rev. Symbolic Logic 1, 335–354 (2008)
12. Leo, J.: Modeling relations. J. Philos. Logic 37, 353–385 (2008)
13. MacBride, F.: Relations. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Phi-

losophy. Metaphysics Research Lab, Stanford University, Winter 2016 edn. (2016)
14. Morton, A.: Complex individuals and multigrade relations. Noûs 9(3), 309–318

(1975)
15. Oliver, A., Smiley, T.: Multigrade predicates. Mind 113(452), 609–681 (2004)
16. Parsons, T.: Events in the Semantics of English. MIT Press, Cambridge (1990)
17. Savnik, I.: Index data structure for fast subset and superset queries. In: Cuzzocrea,

A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol.
8127, pp. 134–148. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40511-2 10

18. Sedgewick, R., Wayne, K.: Algorithms. Addison-Wesley Professional, Boston
(2011)

19. Shapiro, S.C.: SNePS: a logic for natural language understanding and commonsense
reasoning. In: Iwańska, �L.M., Shapiro, S.C. (eds.) Natural Language Processing and
Knowledge Representation: Language for Knowledge and Knowledge for Language,
pp. 175–195. AAAI Press/The MIT Press, Menlo Park (2000)

20. Shapiro, S.C.: Symmetric relations, intensional individuals, and variable binding.
Proc. IEEE 74(10), 1354–1363 (1986)

21. Taylor, B., Hazen, A.P.: Flexibly structured predication. Logique Anal. 139–140,
375–393 (1992)

https://doi.org/10.1007/978-3-642-40511-2_10
https://doi.org/10.1007/978-3-642-40511-2_10

Compilation of Conditional Knowledge
Bases for Computing C-Inference

Relations

Christoph Beierle, Steven Kutsch(B), and Kai Sauerwald

Faculty of Mathematics and Computer Science, FernUniversität in Hagen,
58084 Hagen, Germany

Steven.Kutsch@fernuni-hagen.de

Abstract. A conditional knowledge base R contains defeasible rules of
the form “If A, then usually B”. For the notion of c-representations, a
skeptical inference relation taking all c-representations of R into account
has been suggested. In this paper, we propose a 3-phase compilation
scheme for both knowledge bases and skeptical queries to constraint sat-
isfaction problems. In addition to skeptical c-inference, we show that
also credulous and weakly skeptical c-inference can be modelled as a
constraint satisfaction problem, and that the compilation scheme can be
extended to such queries. For each compilation step, we prove its sound-
ness and completeness, and demonstrate significant efficiency benefits
when querying the compiled version of R. These findings are also sup-
ported by experiments with the software system InfOCF that employs
the proposed compilation scheme.

1 Introduction

Conditionals of the form “if A, then usually B” establish a plausible (or reason-
able, probable, ...) relationship between A and B, allowing also for exceptions.
A set R of such conditionals is called a knowledge base. A major question in
nonmonotonic reasoning is what such a conditional knowledge base entails (e.g.,
[9,19,21]). This induces an inference relation saying that A entails B in the
context of R, denoted by A |∼RB. Depending on the semantics chosen, the com-
putation of |∼R might involve complex and costly computations. The main idea
of compiling a knowledge base R for answering queries is therefore to transform
R into a compiled form such that it is cheaper to use the compiled version of
R instead of using R for answering whether an inference holds in the context of
R. The potential benefits of using the latter will increase the more queries are
asked with respect to R.

In this paper, we propose a compilation scheme for R tailored towards com-
puting various inference relations based on c-representations [16,17]. Realizing
skeptical c-inference takes all c-representations into account and requires to gen-
erate and solve a complex constraint satisfaction problem [3]. Employing the
3-phase compilation developed here for skeptical c-inference yields significant
c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 34–54, 2018.
https://doi.org/10.1007/978-3-319-90050-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_3&domain=pdf

Compilation of Conditional Knowledge Bases 35

benefits when using a compiled version of R; the benefit for answering queries
consists of reusing the precompiled results of NP-hard computations. We also
develop a new method for realizing credulous and weakly skeptical c-inference [4]
and show that the computation scheme can be extended to these inference rela-
tions. For all compilation and optimization steps, formal correctness proofs are
given.

Darwiche and Marquis [10] detailed different approaches of compiling propo-
sitional knowledge bases to easier target languages, that allow for easier and
faster inference, but they do not consider conditional knowledge bases. Eiter
and Lukasewicz [13] studied the efficiency benefits of adding strict facts to a
conditional knowledge base, but the compilation of a knowledge base is not
addressed.

After recalling the required background (Sect. 2), the three phases of knowl-
edge base compilation (Sects. 3, 4 and 5) and the compilation of skeptical c-
inference is introduced (Sect. 6). Section 7 investigates the compilation benefits
and briefly describes an implementation employing our compilation scheme. In
Sect. 8, a realization and a compilation of credulous and weakly skeptical c-
inference is developed, and in Sect. 9, we conclude and point out further work.

2 Background

Conditional Logic and OCFs. Let Σ = {v1, ..., vm} be a finite propositional
alphabet. From Σ we obtain the propositional language L as the set of formulas
of Σ closed under negation ¬, conjunction ∧, and disjunction ∨, as usual. For
shorter formulas, we abbreviate conjunction by juxtaposition (i.e., AB stands
for A ∧ B), and negation by overlining (i.e., A is equivalent to ¬A). A literal is
a propositional variable vi or a negated propositional variable vi. A conjunction
that mentions every variable in Σ, is called a complete conjunction over Σ. Let
Ω denote the set of possible worlds over L; Ω will be taken here simply as the set
of all propositional interpretations over L and can be identified with the set of all
complete conjunctions over Σ. For ω ∈ Ω, ω |= A means that the propositional
formula A ∈ L holds in the possible world ω.

A conditional (B|A) with A,B ∈ L encodes the defeasible rule “if A then
normally B” and is a trivalent logical entity with the evaluation going back to
de Finetti [11]:

(B|A)(ω) =

⎧
⎨

⎩

true iff ω |= AB (verification)
false iff ω |= AB (falsification)
undefined iff ω |= A (not applicable)

An ordinal conditional function (OCF, ranking function) [23] is a function
κ : Ω → N0 ∪ {∞} that assigns to each world ω ∈ Ω an implausibility rank κ(ω):
the higher κ(ω), the more surprising ω is. OCFs have to satisfy the normalization
condition that there has to be a world that is maximally plausible, i.e., κ−1(0) 	=
∅. The rank of a formula A is defined by κ(A) = min{κ(ω) | ω |= A}. An OCF
κ accepts a conditional (B|A), denoted by κ |= (B|A), if the verification of

36 C. Beierle et al.

the conditional is less surprising than its falsification, i.e., if κ(AB) < κ(AB).
This can also be understood as a nonmonotonic inference relation between the
premise A and the conclusion B: We say that A κ-entails B, written A |∼κB, iff
κ accepts the conditional (B|A); formally, this is given by:

A |∼κB iff κ |= (B|A) iff κ(AB) < κ(AB) (1)

Note that κ(AB) < κ(AB) is equivalent to κ(AB) − κ(A) > 0, giving us

κ |= (B|A) iff κ(AB) − κ(A) > 0. (2)

The acceptance relation in (1) is extended as usual to a set R of conditionals,
called a knowledge base, by defining κ |= R if κ |= (B|A) for all (B|A) ∈ R. This
is synonymous to saying that κ is admissible with respect to R [15], or that κ is
a ranking model of R. R is consistent iff it has a ranking model; otherwise, R
is called inconsistent.

P-Entailment and System P-Inference. While A |∼κB as given in (1)
defines a nonmonotonic inference relation based on a single ranking function κ,
one can also define an inference relation taking all models of a knowledge base R
into account. This yields the notion of p-entailment which is a well-established
inference in the area of ranking functions.

Definition 1 (p-entailment [15]). Let R be a knowledge base and let A,B be
formulas. Then, A p-entails B in the context of R, written A |∼p

RB, if A |∼κB
holds for all κ accepting R.

Nonmonotonic inference relations are usually evaluated by means of proper-
ties. In particular, the axiom system P [1] provides an important standard for
plausible, nonmonotonic inferences. We refer to Dubois and Prade [12] for the
relation between p-entailment and system P:

Proposition 1 ([12]). Let A, B be formulas and let R be a knowledge base.
Then B follows from A in the context of R with the rules of system P if and
only if A p-entails B in the context of R.

So, given a knowledge base R, system P inference is the same as p-entailment.

C-Representations and C-Inference. Among the models of R, c-repres-
entations are special ranking models obtained by assigning individual impacts
to the conditionals in R. The rank of a possible world is then defined as the
sum of impacts of falsified conditionals. For an in-depth introduction to c-
representations and their use of the principle of conditional preservation we refer
to [16,17]. The central definition is the following:

Compilation of Conditional Knowledge Bases 37

Definition 2 (c-representation [16,17]). A c-representation of a knowledge
base R = {(B1|A1), . . . , (Bn|An)} is a ranking function κ constructed from inte-
ger impacts ηi ∈ N0 = {0, 1, 2, . . .} assigned to each conditional (Bi|Ai) such
that κ accepts R and is given by:

κ(ω) =
∑

1�i�n

ω |=AiBi

ηi (3)

Every c-representation exhibits desirable inference properties [16,17]. C-in-
ference was introduced in [3] as the skeptical inference relation taking all c-
representations of R into account.

Definition 3 (c-inference, |∼sk
R [3]). Let R be a knowledge base and let A,

B be formulas. Then B is a (skeptical) c-inference from A in the context of R,
denoted by A |∼sk

R B, if A |∼κB holds for all c-representations κ for R.

3 Phase I: Compiling Knowledge Bases to CSPs

For illustrating the steps and concepts of our compilation scheme, we will use
the following as a running example.

Example 1. Let Σ = {b, p, f, w} representing birds, penguins, flying things and
winged things, and let Rbird = {r1, r2, r3, r4} be the knowledge base with:

r1 : (f |b) birds usually fly
r2 : (f |p) penguins usually do no fly
r3 : (b|p) penguins are usually birds
r4 : (w|b) birds usually have wings

For determining whether a c-inference A |∼sk
R B holds, one has to take into

account all c-representations of R and their behaviour with respect to A and B.
Our compilation approach will use the following modelling of c-representations
as solutions of a constraint satisfaction problem (CSP) that has been employed
for computing c-representations using constraint logic programming [6].

Definition 4 (CR(R) [6]). Let R = {(B1|A1), . . . , (Bn|An)}. The constraint
satisfaction problem for c-representations of R, denoted by CR(R), on the con-
straint variables {η1, . . . , ηn} ranging over N0 is given by the conjunction of the
constraints, for all i ∈ {1, . . . , n}:

ηi > min
ω |=AiBi

∑

j �=i

ω |=AjBj

ηj − min
ω |=AiBi

∑

j �=i

ω |=AjBj

ηj (4)

A solution of CR(R) is an n-tuple #»η = (η1, . . . , ηn) of natural numbers;
#»η induces the ranking function κ#»η as given by (3). For a constraint satisfac-
tion problem CSP , the set of solutions is denoted by Sol(CSP). Thus, with
Sol(CR(R)) we denote the set of all solutions of CR(R).

38 C. Beierle et al.

Example 2. With ΩΣ denoting the set of worlds over Σ = {b, p, f, w} and ri =
(Bi|Ai) for i ∈ {1, . . . , 4} the constraint system CR(Rbird) is:

η1 > min
ω∈ΩΣ

ω |= bf

∑

j �=1

ω |=AjBj

ηj − min
ω∈ΩΣ

ω |= bf

∑

j �=1

ω |=AjBj

ηj (5)

η2 > min
ω∈ΩΣ

ω |= pf

∑

j �=2

ω |=AjBj

ηj − min
ω∈ΩΣ

ω |= pf

∑

j �=2

ω |=AjBj

ηj (6)

η3 > min
ω∈ΩΣ

ω |= pb

∑

j �=3

ω |=AjBj

ηj − min
ω∈ΩΣ

ω |= pb

∑

j �=3

ω |=AjBj

ηj (7)

η4 > min
ω∈ΩΣ

ω |= bw

∑

j �=4

ω |=AjBj

ηj − min
ω∈ΩΣ

ω |= bw

∑

j �=4

ω |=AjBj

ηj (8)

Table 1 details how solutions of CR(Rbird) translate to OCFs accepting Rbird .

Table 1. Verification and falsification for the conditionals in Rbird from Example 2.
#»η 1,

#»η 2 and #»η 3 are solutions of CR(Rbird) and κ#»η 1(ω), κ#»η 2(ω), and κ#»η 3(ω) are their
induced ranking functions according to Definition 2.

Compilation of Conditional Knowledge Bases 39

Note that solving CR(Rbird) directly requires to solve 2 · |Rbird | minimiza-
tion tasks. The variable ω in each minimization task runs over the models of a
propositional formula, thus each minimization task requires the enumeration of
all models of a propositional formula, which may be up to 2|Σ| many. For each
fitting possible world, the involved summation term in turn requires to evaluate
|Rbird | − 1 propositional formulas with respect to this possible world.

Phase I of the knowledge base compilation scheme for a knowledge base R
transforms R into CR(R) as given by Definition 4. It has been shown that CR(R)
is a sound and complete modelling of all c-representations of R [3, Proposition 3
and 4]; moreover, Ris consistent iff CR(R) has a solution [3, Corollary 1]. This
ensures the correctness of Phase I of the knowledge base compilation.

4 Phase II: From CR(R) to Powerset Representations

In general, the transformation of the constraints in CR(R) to a form that allows
the use of an automated constraint solver requires several computationally hard
calculations, e.g., the enumeration of all models of a propositional formula. The
following notion of PSR terms provides a concept for representing a compiled
form of the subtraction expressions in CR(R) that only involves constraint vari-
ables and no propositional worlds.

Definition 5 (Powerset Representation, PSR term). Let R and CR(R)be
as in Definition 4, and let

ηi > min
ω |=AiBi

∑

j �=i

ω |=AjBj

ηj

︸ ︷︷ ︸
Vmini

− min
ω |=AiBi

∑

j �=i

ω |=AjBj

ηj

︸ ︷︷ ︸
Fmini

(9)

be a constraint in CR(R). The powerset representation of Vmini
− Fmini

, also
called PSR term, is the pair 〈Π(Vmini

), Π(Fmini
)〉 with

Π(Vmini
) = { {ηj | j 	= i, ω |= AjBj} | ω |= AiBi} (10)

Π(Fmini
) = { {ηj | j 	= i, ω |= AjBj} | ω |= AiBi} (11)

Example 3. The PSR terms for the four constraints (5)–(8) are:

〈Π(Vmin1), Π(Fmin1)〉 = 〈{{η2}, {η2, η4}, ∅, {η4}}, {∅, {η4}}〉 (12)
〈Π(Vmin2), Π(Fmin2)〉 = 〈{{η1}, {η3}, {η1, η4}}, {∅, {η4}, {η3}}〉 (13)
〈Π(Vmin3), Π(Fmin3)〉 = 〈{{η2}, {η2, η4}, {η1}, {η1, η4}}, {∅, {η2}}〉 (14)
〈Π(Vmin4), Π(Fmin4)〉 = 〈{{η2}, {η1}, ∅}, {{η2}, {η1}, ∅}〉 (15)

Thus, a PSR term 〈V, F〉 is a pair of sets of subsets of the involved constraint
variables. The following definition assigns an arithmetic expression to any set
of sets of constraint variables. For every set S, we will use P(S) to denote the
power set of S.

40 C. Beierle et al.

Definition 6 (represented arithmetic term, ρ). Let CV = {η1, . . . , ηn} be
a set of constraint variables and let M ∈ P(CV) be an element of the power set
of CV . The arithmetic expression represented by M = {S1, . . . , Sr}, denoted by
ρ(M), is:

ρ(M) = min{
∑

η∈S1

η, . . . ,
∑

η∈Sr

η} (16)

Note that min ∅ = ∞, and if S = ∅ then
∑

η∈S η = 0. We extend the definition
of ρ to PSR terms 〈V, F〉:

ρ(〈V, F〉) =

{
∞ ifρ(V) = ∞ and ρ(F) = ∞
ρ(V) − ρ(F) else

(17)

Note that the first case in (17) catches the extreme case of a knowledge base R
containing a conditional of the form (A|⊥). Because such a conditional is never
applicable, it is never verified or falsified. Thus, a knowledge base containing
(A|⊥) is inconsistent, since no ranking function accepting (A|⊥) exists.

The following proposition states that a subtraction expression occurring in
CR(R) can safely be replaced by the arithmetic expressions obtained from its
PSR representation.

Proposition 2. Let R be a knowledge base, CV be the constraint variables
occurring in CR(R), and Vmin − Fmin be an expression occurring in CR(R).
Then for every variable assignment α : CV → N0 we have:

α(Vmin) − α(Fmin) = α(ρ(〈Π(Vmin), Π(Fmin)〉) (18)

The following example illustrates the relationship between the original con-
straints in CR(Rbird) and the arithmetic terms obtained from the PSR terms
through ρ under a given variable assignment α.

Example 4. We take Vmin2 and Fmin2 for which the PSR terms Π(Vmin2) and
Π(Fmin2) are given in Example 3. For the variable assignment α with α(η1) = 1,
α(η2) = 2, α(η3) = 2, and α(η4) = 1 we get

α(Vmin2) − α(Fmin2) = min{1, 2, 1 + 1} − min{0, 1, 2} (19)

for the left hand side of (18). For the right hand side of (18) we get:

α(ρ(〈Π(Vmin2), Π(Fmin2))〉) (20)
= α(ρ({{η1}, {η3}, {η1, η4}}) − ρ({∅, {η4}, {η3}})) (21)
= α(min{η1, η3, η1 + η4} − min{0, η4, η3}) (22)
= min{1, 2, 1 + 1} − min{0, 1, 2} (23)

Note that, as stated by Proposition 2, the expressions (19) and (23) are equal.

Compilation of Conditional Knowledge Bases 41

Definition 7 (Knowledge base compilation Phase II). Phase II of the
compilation scheme for a knowledge base R transforms CR(R) into PSR(R)
where PSR(R) is obtained from CR(R) by replacing every subtraction expression
of the form Vmin − Fmin by its PSR term 〈Π(Vmin), Π(Fmin)〉.

In order to be able to directly compare the results of the different compilation
phases, we will use ρ(PSR(R)) to denote the result of replacing every PSR term
〈V, F〉 in PSR(R) by ρ(〈V, F〉). Using this notation, Proposition 2 ensures:

Proposition 3 (Correctness of knowledge base compilation Phase II).
For every knowledge base R, we have Sol(CR(R)) = Sol(ρ(PSR(R))).

In order to ease our notation, in the following we may omit the explicit
distinction between a PSR term 〈V, F〉 and its represented subtraction expres-
sion ρ(〈V, F〉). Likewise, we may omit the distinction between PSR(R) and
ρ(PSR(R)).

5 Phase III: Optimizing PSR Subtraction Expressions

The powerset representation 〈V, F〉 of a subtraction expression can be opti-
mized. For instance, the minimum of two sums S1 and S2 of non-negative inte-
gers is S1 if all summands of S1 also occur in S2. Figure 1 contains a set T of
transformation rules that can be applied to pairs of elements of the powerset
of constraint variables, and thus in particular to the PSR representation of a
subtraction expression:

(ss-V) removes a set S′ that is an element in the first component if it is a
superset of another set S in the first component.

(ss-F) removes a set S′ that is an element in the second component if it is a
superset of another set S in the second component.

(elem) removes an element η that is in every set in both the first and the
second component from all these sets.

(∅-V) removes all other sets from the first component if it contains the empty
set, such that the empty set remains as the only element in V.

(∅-F) removes all other sets from the second component if it contains the
empty set, such that the empty set remains as the only element F .

Note that T is not a minimal set of transformation rules because (∅-V)
and (∅-F) could be replaced by a finite chain of applications of (ss-V) and
(ss-F), respectively. We include these two rules because they allow for reductions
involving fewer steps.

The following propositions state properties of the transformation rules T
which will be vital when using them for compiling CR(R):

Proposition 4. The transformation system T is terminating.

Proposition 5. The transformation system T is confluent.

42 C. Beierle et al.

Fig. 1. Transformation rules T for optimizing PSR representations of subtractions.

Termination of T is easy to show, and confluence of T holds because all
critical pairs reduce to a common normal form (cf. [2,18]).

Proposition 6 (T correct). Let R be a knowledge base, CV be the con-
straint variables occurring in CR(R), and 〈V, F〉 be an expression occurring
in PSR(R). Then for every variable assignment α : CV → N0 we have:

α(ρ(〈V, F〉)) = α(ρ(T (〈V, F〉))) (24)

Proof. It suffices to show that every individual rule in T is correct.

(ss-V) The rule (ss-V) is applicable if in V there are two sets S and S′ such
that S ⊆ S′. Under ρ, this corresponds to a minimization term containing
two sums s = c1 + . . . + cn and s′ = c1 + . . . + cn + c′

1 + . . . + c′
m for m ∈ N0,

or s = s′. Since for every α it holds that α(s) � α(s′), the sum s′ can safely
be ignored in the minimization. Hence, the set S′ can be removed from V.

(ss-F) The argument for the correctness of (ss-V) also holds for (ss-F).
(elem) The rule (elem) is applicable if there is a η ∈ CV that is an element of

every set in V and F . Under ρ, this corresponds to a subtraction expression
in which each sum in both minimization terms has a common addend η. For
every variable assignment α, the value α(η) thus is an addend in both the
minimal sum in ρ(V) and the minimal sum in ρ(F). Since the value of the
minimal sum in ρ(F) is subtracted from the value of the minimal sum in
ρ(V), the common addend η can safely be removed from every sum in ρ(V)
and ρ(F). This means that η can be removed from every set in V and F .

(∅-V) and (∅-F) As stated above, (∅-V) and (∅-F) can be replaced by a
finite chain of applications of (ss-V) and (ss-F), respectively. Therefore, their
correctness follows from the correctness of (ss-V) and (ss-F). ��

Thus, the result of applying T exhaustively to a PSR term 〈V, F〉 is a
simplified PSR term that is equivalent to 〈V, F〉 with respect to all variable
assignments.

Compilation of Conditional Knowledge Bases 43

Example 5. Consider the PSR representation 〈Π(Vmin3), Π(Fmin3)〉 given in
(14) for the subtraction expression in the constraint (7). The following is a pos-
sible sequence of applications of rules from T to (14) where underlining indicates
the subexpression to which the given transformation rule is applied:

〈{{η2}, {η2, η4}, {η1}, {η1, η4}}, {∅, {η2}}〉 (ss-V)−−−−→〈{{η2}, {η1}, {η1, η4}},

{∅, {η2}}〉 (ss-V)−−−−→ 〈{{η2}, {η1}}, {∅, {η2}}〉 (∅-F)−−−−→ 〈{{η2}, {η1}}, {∅}〉

Since T is confluent, all application sequences for (14) lead to the obtained
unique normal form T (〈Π(Vmin3), Π(Fmin3)〉) = 〈{{η2}, {η1}}, {∅}〉.

For the knowledge base Rbird
′ = Rbird ∪ {r5 : (b|�)} the PSR term for the

conditional r1 : (f |b) is:

〈Π(V ′
min1

), Π(F ′
min1

)〉=〈{{η2, η5}, {η2, η4, η5}, {η5}, {η4, η5}}, {{η5}, {η4, η5}}〉

This term can be obtained from Vmin1 and Fmin1 given in (12) by adding the
impact η5 to every set in Vmin1 and Fmin1 , since the conditional r5 is falsified in
every model of both the verification and the falsification of the conditional r1.
By applying T to 〈Π(V ′

min1
), Π(F ′

min1
)〉 we get:

〈{{η2, η5}, {η2, η4, η5}, {η5}, {η4, η5}}, {{η5}, {η4, η5}}〉
(elem)−−−−→ 〈{{η2}, {η2, η4}, ∅, {η4}}, {∅, {η4}}〉
(∅-V)−−−−→ 〈{∅}, {∅, {η4}}〉
(∅-F)−−−−→ 〈{∅}, {∅}〉

Note that the transformation rule (elem) is essential to obtain the final term.

We will now apply the optimization method to the constraint system CR(R).

Definition 8 (Knowledge base compilation Phase III, CCR(R)). Phase
III of the compilation scheme for a knowledge base R transforms PSR(R) into
CCR(R), called the compilation of R, where CCR(R) is obtained from PSR(R)
by replacing ever PSR term 〈V, F〉 by its optimized normal form T (〈V, F〉).

Example 6. CCR(Rbird), the compilation of Rbird , is given by:

η1 > 〈{∅}, {∅}〉
η2 > 〈{{η1}, {η3}, {η4}}, {∅}〉
η3 > 〈{{η2}, {η1}}, {∅}〉
η4 > 〈{∅}, {∅}〉

Similar as before, ρ(CCR(R)) denotes the constraint system obtained from
CCR(R) by replacing every PSR term 〈V, F〉 by ρ(〈V, F〉).

44 C. Beierle et al.

Proposition 7 (Soundness and completeness of compilation). For every
knowledge base R, the compilation of R is sound and complete, i.e.,

{κ#»η | #»η ∈ Sol(ρ(CCR(R)))} = {κ | κ is a c-representation of R}.

Proof. The proof follows from the soundness and completeness of CR(R) [3,
Propositions 3 and 4] together with Propositions 3 and 6. ��

The complete knowledge base compilation scheme can now be illustrated by:

R Phase I−−−−−→ CR(R) Phase II−−−−−→ PSR(R) Phase III−−−−−−→ CCR(R)

The next section extends this compilation scheme to queries.

6 Compilation for Skeptical C-Inference

For computing a p-entailment A |∼p
RB, a well-known theorem says that this can

be reduced to the consistency of the extended knowledge base R ∪ {(B|A)}.

Proposition 8 ([12,14,15]). Let R be a knowledge base and let A, B be formu-
las. Then A p-entails B in the context of a knowledge base R iff R ∪ {(B|A)} is
inconsistent.

A c-inference A |∼sk
R B, however, can not be reduced to the consistency of an

extended knowledge base [3]. Instead, computing a c-inference can be reduced
to the solvability of a CSP using the (non-)acceptance constraint for (B|A).

Definition 9 (CRR(B|A),¬CRR(B|A) [3]). Let (B|A) be a conditional
and R = {(B1|A1), . . . , (Bn|An)} be a knowledge base. The acceptance con-
straint for (B|A) with respect to R, denoted by CRR(B|A), is:

min
ω |=AB

∑

1�i�n

ω |=AiBi

ηi < min
ω |=AB

∑

1�i�n

ω |=AiBi

ηi (25)

¬CRR(B|A) denotes the negation of (25), i.e., it denotes the constraint:

min
ω |=AB

∑

1�i�n

ω |=AiBi

ηi � min
ω |=AB

∑

1�i�n

ω |=AiBi

ηi (26)

Note that both CRR(B|A) and ¬CRR(B|A) are constraints on the constraint
variables η1, . . . , ηn which are used in the CSP CR(R), but they do not introduce
any new variables not already occurring in CR(R).

Proposition 9 (c-inference as a CSP [3]). Let R = {(B1|A1), . . . , (Bn|An)}
be a consistent knowledge base and A,B formulas. Then the following holds:

A |∼sk
R B iff CR(R)∪ {¬CRR(B|A)} has no solution. (27)

Compilation of Conditional Knowledge Bases 45

Like for a knowledge base R, we can apply similar compilation and optimization
steps to a query.

Definition 10 (query compilation, ¬CCRR(B|A)). Let A,B be formulas
and R = {(B1|A1), . . . , (Bn|An)} be a knowledge base. The compilation of a
query A |∼sk

R B, denoted by ¬CCRR(B|A), is obtained in three phases:
Phase I results in ¬CRR(B|A). Then, Phase II transforms ¬CRR(B|A) given
by Vq � Fq into

0 � 〈Π(Vq), Π(Fq)〉 (28)

denoted by ¬PSRR(B|A), with

Π(Vq) = { {ηi | ω |= AiBi} | ω |= AB} (29)

Π(Fq) = { {ηi | ω |= AiBi} | ω |= AB} (30)

Phase III yields ¬CCRR(B|A) by replacing the expression 〈Π(Vq), Π(Fq)〉 in
¬PSRR(B|A) by T (〈Π(Vq), Π(Fq)〉).

Example 7. Consider the knowledge base Rbird = {(f |b), (f |p), (b|p), (w|b)} from
Example 1. The query p |∼sk

Rbird
w asking whether penguins have wings in the

context of Rbird is compiled in three steps:

I. ¬CRRbird
(w|p):

min
ω |= pw

∑

ω |=AiBi

(Bi|Ai)∈Rbird

ηi � min
ω |= pw

∑

ω |=AiBi

(Bi|Ai)∈Rbird

ηi

II. ¬PSRRbird
(w|p):

0 � 〈{{η1}, {η2}, {η3}, {η2, η3}}, {{η3}, {η1, η4}, {η2, η3}, {η2, η4}}〉

III. ¬CCRRbird
(w|p):

0 � 〈{{η1}, {η2}, {η3}}, {{η3}, {η1, η4}, {η2, η4}〉

Recall that we make no distinction between 〈V, F〉 and ρ(〈V, F〉). This allows
us, for instance, to deal with CCR(R) as a constraint system instead of using
ρ(CCR(R)) or to write ¬PSRR(B|A) synonymously for ρ(¬PSRR(B|A)).

Proposition 10 (correctness of compiled c-inference). Let R be a con-
sistent knowledge base and A,B formulas. Then the following holds:

A |∼sk
R B iff CCR(R)∪ {¬CCRR(B|A)} has no solution. (31)

46 C. Beierle et al.

Proof. Using Proposition 9, the proof is analogous to the proof of Proposition 7.

Example 8. Since CCR(Rbird)∪ {¬CCRRbird
(w|p)} has no solution, p |∼sk

Rbird
w is

a c-inference.

As an immediate consequence of the correctness of modelling c-inference as a
CSP and of the correctness of compiling knowledge bases and queries we get:

Proposition 11. Let R = {(B1|A1), . . . , (Bn|An)} be a consistent knowledge
base and A,B be formulas. Then A |∼sk

R B is equivalent to every of the following
conditions, regardless how X is chosen from {CR,PSR, CCR}:

CR(R) ∪ {¬XR(B|A)} has no solution. (32)
PSR(R) ∪ {¬XR(B|A)} has no solution. (33)
CCR(R) ∪ {¬XR(B|A)} has no solution. (34)

We will now investigate the benefits of the compilation and optimization.

7 Compilation Benefits and Implementation

The main objective of compilation and optimization techniques is to obtain per-
formance gains when executing a compiled and optimized program instead of the
uncompiled and non-optimized version. The cost of compilation itself is usually
neglected as a program compiled once can be executed arbitrarily often. This
also applies to the situation considered in this paper. Since the motto is “com-
pile once, query often” [10], the essential benefits of knowledge base compilation
becomes apparent when comparing the costs of querying an uncompiled version
of a knowledge base R on the one hand and the cost of querying the compiled
and optimized version of R on the other hand.

Compilation Pipeline and the Reasoning Platform InfOCF. The compi-
lation scheme presented above has been implemented in the reasoning platform
InfOCF [5]. InfOCF allows us to load knowledge bases, calculate ranking func-
tions based on system Z [21] or c-representations, and implements a number of
different nonmonotonic inference relations. Beside both system P and system Z
entailment, it implements serveral inference relations based on c-representations,
employing the constraint solver of SICStus Prolog using the library clp(FD) [20].
To make use of compiled knowledge bases, InfOCF implements the compilation
pipeline as outlined in Fig. 2. Thus, multiple queries of the form A |∼sk

R B to a
knowledge base R are dealt with by constructing CCR(R) once and then using
CCR(R) for answering queries. In the following we investigate the benefits of
the Phases I to III of this knowledge base compilation.

Compilation of Conditional Knowledge Bases 47

Fig. 2. Overview of the compilation pipelines for compiling knowledge bases R and
queries A |∼sk

RB where X ∈ {CR, PSR, CCR} as in Proposition 11

Phase I and Phase II. In the approach presented here answering a query
A |∼sk

R B involves the construction and solving of the constraint systems CR(R)
and ¬CRR(B|A). Moreover, this is currently the only known feasible way to
compute an answer for the query A |∼sk

R B. Thus, Phase I of the knowledge base
compilation is part of every implementation for skeptical c-inference existing
today. The benefit of using the result of Phase I is thus the saving of the costs of
transforming R to CR(R); this is given by a linear function on the size of R since
CR(R) as given in Definition 4 and illustrated in Example 2 can be generated
from R by some form of syntactic translation.

Furthermore, every (currently known) approach to skeptical c-inference
requires to solve the constraint system CR(R). As argued in Sect. 3, the con-
straint system CR(R) can not be processed directly by a standard constraint
solver. As illustrated in Example 2, according to the present state of the art
several model enumerations and propositional entailment problems are solved
in order to transform CR(R) into a form usable by a constraint solver. Such a
form is essentially given by the result PSR(R) of our knowledge base compila-
tion scheme. Hence, the benefits of reusing the results of Phase II correspond
directly to the cost of constructing PSR(R) from CR(R).

Proposition 12. Let Σ be an alphabet with m symbols and R a knowledge base
over Σ with n conditionals. Then the complexity of constructing PSR(R) from
CR(R) is bounded by O(n · 2m) propositional formula evaluations.

Proposition 12 can be proved by formalizing the following outline. Let R =
{(B1|A1), . . . , (Bn|An)} and ηi > Vmini

−Fmini
be a constraint in CR(R), where

(Bi|Ai) is the corresponding conditional of the constraint and

Vmini
= min

ω |=AiBi

∑

j �=i

ω |=AjBj

ηj and Fmini
= min

ω |=AiBi

∑

j �=i

ω |=AjBj

ηj .

Constructing Π(Vmini
) can be done by first computing the set Mod (AiBi), i.e.

checking ω |= AiBi for every world ω over Σ, where for a formula F , Mod(F)
denotes the set of all models of F . Then compute for each of the models ω in
Mod (AiBi) the set of all conditionals from R which are falsified by ω. Thus,
the costs of both steps are bounded by O(n · 2m) propositional formula eval-
uations. By an analogous argumentation, the cost for computing Π(Fmini

) is

48 C. Beierle et al.

also bounded by O(n · 2m) propositional formula evaluations. By performing
these computations for every constraint of the n constraints in CR(R), we can
conclude that the complexity of computing PSR(R) from CR(R) is bounded
by O(n2 · 2m) propositional formula evaluations. This can be optimized by pre-
computing, for every conditional in R, the setsMod (AiBi) and Mod (AiBi), and
solving the prior described steps by table lookups. All in all the cost of the
computation of all PSR terms for CR(R) is bounded by O(n · 2m) propositional
formula evaluations.

Therefore, by Proposition 12, the worst case time complexity for compiling
PSR(R) from CR(R) is bounded exponentially in the number of propositional
symbols. This bound might not be strict, but the computation is at least as hard
as solving a boolean satisfiability problem, which is known to be NP complete
since the computation of, e.g., the set of verifying worlds, answers the question
whether a verifying model exists or not. Thus, compiling R to PSR(R) and
caching PSR(R) can save up to n × 2m formula evaluations for every query.

In InfOCF the compilation of knowledge bases is used to significantly speed
up the answering of multiple queries for a single knowledge base. The compi-
lation of a knowledge base R to PSR(R) is what made investigations possible
where complete inference relations are computed by determining the acceptance
of every syntactically different conditional, up to semantic equivalence, for skep-
tical c-inference with respect to R. The number of possible queries grows expo-
nentially with the size of the signature, and quickly grows to several million
queries. Calculating PSR(R) for a knowledge base only once allows us to answer
several hundred thousand queries easily, while this was simply not feasible with-
out employing the compilation of the knowledge base [8].

To illustrate the practical benefits, we measured the compilation time for the
knowledge base Rbird (Example 1) over a series of signatures of increasing size.
The original signature Σ = {b, p, f, w} from Example 1 is extended to Σ1, . . . , Σ6

by adding new propositional variables ai, such that Σ1 = {b, p, f, w, a1}, Σ2 =
{b, p, f, w, a1, a2} and so forth, giving us signatures of size 5 to 10. Figure 3 shows
the results of our measurements.

Figure 3a shows that the time required for the compilation of knowledge bases
and queries grows exponentially with the number of atoms in the signature. The
time required for the compilation of the query is consistently one fourth of the
time required for the compilation of the knowledge base, since in this example
the knowledge base contains four conditionals. Note that these empirical results
correspond directly to the observation stated in Proposition 12. The compilation
time for the knowledge base ranges from 0.14 s for a signature size of 5, to
44.26 min for a signature size of 10.

Figure 3b illustrates that, while the time required to answer multiple queries
grows linearly with the number of queries, the absolute time can be drastically
reduced by compiling the knowledge base once and reusing CCR(R). For Rbird

over the signature Σ4 = {b, p, f, w, a1, a2, a3, a4} and 20 queries, the difference
between making use of our compilation and recompiling the knowledge base for
every query is 14.78 min.

Compilation of Conditional Knowledge Bases 49

5 6 7 8 9 10
10−2

10−1

100

101

102

103

Number of atoms

C
om

pi
la
ti
on

ti
m
e
in

se
co
nd

s
KB Compilation

Query Compilation

(a)

0 5 10 15 20
0

200

400

600

800

1,000

1,200

Number of queries

A
ns
w
er
ti
m
e
in

se
co
nd

s

reusing compiled KB
no compiled KB

(b)

Fig. 3. Time measurements with Rbird from Example 1. Part (a) shows the exponential
growth (logarithmic scale) of the time required for knowledge base compilation and
query compilation. Part (b) shows the answer time for 1 to 20 queries for Rbird over
Σ4 with |Σ4| = 8.

Phase III. Proposition 12 implies that the time costs of compiling Phase II
can be exponential; corresponding benefits can thus be achieved by reusing the
compilation result of Phase II. For studying the effect of Phase III, note that
there are knowledge bases for which the minimization terms in PSR(R) contain
exponentially many sums. For example, for a knowledge base Rn of conditional
facts of the form (ai|�) for i ∈ {1, . . . , n} (cf. [7]), each conditional is verified
and falsified by 2n−1 possible worlds. Therefore, both Π(Vmini

) and Π(Fmini
)

contain 2n−1 elements.
The constraints in CCR(R) only contain PSR terms in normal form with

respect to the transformation system T , i.e. there is no rule in T that is applicable
to a PSR term in CCR(R). Therefore, especially the two rules (ss-V) and (ss-F)
are not applicable, which implies for every constraint η > 〈V, F〉 in CCR(R)
that there are no two elements v1, v2 ∈ V such that v1 ⊆ v2 holds. The same
holds for the set F . Using this fact, we can give an upper bound for the size of
the constraints in CCR(R) due to Sperner’s Theorem [22], thus indicating the
benefits of Phase III compiling PSR(R) to CCR(R).

Proposition 13. For every knowledge base R = {(B1|A1), . . . , (Bn|An)} and
every constraint ηi > 〈V, F〉 ∈ CCR(R) it holds that both V and F have at
most

(
n

�n/2�
)

elements.

The following Example illustrates the effectiveness of T .

Example 9. Consider Σ = {b, h, l, t, z} and the knowledge base RZ ={r1, . . . , r7}
with r1 = (b|z), r2 = (h|z), r3 = (h|zb), r4 = (t|zb), r5 = (t|zbh), r6 = (l|zbh),
and r7 = (l|zbht). Optimizing the seven PSR terms in PSR(RZ) yields:

〈{{η2, η3, η4}, {η2, η3}, {η4, η5, η6}, {η6, η7}, {η4, η5}, ∅}, {{η2}, ∅}〉
T−→ 〈{∅}, {∅}〉

50 C. Beierle et al.

〈{{η1}, {η4, η5, η6}, {η6, η7}, {η4, η5}, ∅}, {{η1}, {η3, η4}, {η3}}〉
T−→ 〈{∅}, {{η1}, {η3}}〉

〈{{η4, η5, η6}, {η6, η7}, {η4, η5}, ∅}, {{η2, η4}, {η2}}〉 T−→ 〈{∅}, {{η2}}〉
〈{{η2, η3}, {η6, η7}, ∅}, {{η2, η3}, {η5, η6}, {η5}}〉 T−→ 〈{∅}, {{η2, η3}, {η5}}〉

〈{{η6, η7}, ∅}, {{η4, η6}, {η4}}〉 T−→ 〈{∅}, {{η4}}〉
〈{{η4, η5}, ∅}, {{η4, η5}, {η7}}〉 T−→ 〈{∅}, {{η4, η5}, {η7}}〉

〈{∅}, {{η6}}〉 T−→ 〈{∅}, {{η6}}〉

One benefit of optimizing PSR(R) to CCR(R) lies in the space required to
persistently store the constraint system for a knowledge base. In Example 9 the
size of CCR(R) as measured in the number of constraint variables required to
describe every PSR term is almost a quarter of the size of PSR(R). A space
reduction of this scale can make a significant difference when storing larger
knowledge bases persistently.

8 Credulous and Weakly Skeptical C-Inference

In addition to skeptical c-inference |∼sk
R taking all c-representations of R into

account, further inference relations based on c-representations have been sug-
gested.

Definition 11 (credulous c-inference, |∼cr
R [4]). Let R be a knowledge base

and let A, B be formulas. B is a credulous c-inference from A in the context of
R, denoted by A |∼cr

RB, if there is a c-representation κ for R such that A |∼κB.

Credulous c-inference is a liberal extension of skeptical c-inference since
A |∼sk

R B implies A |∼cr
RB for any consistent knowledge base R and any formu-

las A,B. While credulous c-inference has the disadvantage that we might have
both, A |∼cr

RB and A |∼cr
RB, weakly skeptical c-inference is strictly more liberal

than skeptical inference, but less permissive than credulous inference.

Definition 12 (weakly skeptical c-inference, |∼ws
R [4]). Let R be a knowl-

edge base and let A, B be formulas. B is a weakly skeptical c-inference from A
in the context of R, denoted by A |∼ws

RB, if there is a c-representation κ for R
such that A |∼κB and there is no c-representation κ′ for R such that A |∼κ′B.

The following example shows that weakly skeptical c-inference allows for
some desirable inferences that are not possible under skeptical c-inference.

Example 10. Let Rbfa = {(f |b), (a|b), (a|fb)} be a knowledge base, where (f |b)
stands for birds usually fly, (a|b) for birds are usually animals, and (a|fb) for
flying birds are usually animals. Consider a bird that lost its ability to fly (bf).
We would expect that this bird is still considered an animal (a). Yet it holds that

. On the other hand, both bf |∼cr
Rbfa

a and hold. Therefore,
from Definition 12 we get bf |∼ws

Rbfa
a.

Compilation of Conditional Knowledge Bases 51

In [4], a series of properties for weakly skeptical c-inference are proven, but no
realization of credulous or weakly skeptical c-inference has been given. In order
to show that the compilation scheme developed in this paper can also be applied
for computing these inference relations, we will first show that also credulous
and weakly skeptical c-inference can be modelled by CSPs.

Proposition 14 (|∼cr
R as a CSP). Let R = {(B1|A1), . . . , (Bn|An)} be a

consistent knowledge base and A,B be formulas. Then the following holds:

A |∼cr
RB iff CR(R)∪ {CRR(B|A)} has a solution. (35)

Proof. Assume A |∼cr
RB holds, i.e., κ |= (B|A) holds for some c-representation κ

for R. Due to the completeness of CR(R) [3, Proposition 4], there is a solution
#»η = (η1, . . . , ηn) of CR(R) such that κ = κ#»η and κ#»η is defined as in Equation (3).

Since κ#»η |= (B|A), we have κ#»η (AB) < κ#»η (AB) and therefore:

min
ω|=AB

κ#»η (ω) < min
ω|=AB

κ#»η (ω) (36)

Applying Eq. (3) to (36) yields Eq. (25). Thus, #»η is not just a solution of CR(R),
but also of CR(R)∪ {CRR(B|A)}.

For the other direction, let #»η = (η1, . . . , ηn) be a solution of CR(R)∪
{CRR(B|A)}. Then κ#»η is a c-representation due to the soundness of CR(R)
[3, Proposition 3]. Furthermore, since (25) holds for η1, . . . , ηn, we have
minω|=AB κ#»η (ω) < minω|=AB κ#»η (ω) implying A |∼cr

RB. ��

Also weakly skeptical c-inference |∼ws
R can be characterized by employing CSPs.

Proposition 15 (|∼ws
R as a CSP). Let R = {(B1|A1), . . . , (Bn|An)} be a

consistent knowledge base and A,B be formulas. Then the following holds:

A |∼ws
R Biff CR(R)∪ {CRR(B|A)} has a solution , and

CR(R)∪ {CRR(B|A)} has no solution.
(37)

Proof From the definition of |∼ws
R (Definition 12) and the definition of |∼cr

R (Def-
inition 11) we immediately get that A |∼ws

RB holds if and only if A |∼cr
RB holds

and A |∼cr
RB does not hold. These two conditions correspond exactly to the two

conditions on the right-hand side of (37) due to Proposition 14. ��

Note that in the three Propositions 9, 14, and 15 different versions of con-
straints and different forms of arriving at negated variants of constraints are used:
CR(R)∪ {¬CRR(B|A)}, CR(R)∪ {CRR(B|A)} and CR(R)∪ {CRR(B|A)}.

Definition 13 (PSRR(B|A), CCRR(B|A)). Let R, A,B and Vq and Fq as in
Definition 10. The constraints PSRR(B|A) and CCRR(B|A) are given by:

PSRR(B|A) : 0 > 〈Π(Vq), Π(Fq)〉 (38)
CCRR(B|A) : 0 > T (〈Π(Vq), Π(Fq)〉) (39)

52 C. Beierle et al.

Using the constraints from Definition 13, the compilation of credulous and weakly
skeptical queries is defined analogously to the compilation of skeptical queries.
Hence, also the correctness proof for these compilations is analogue to the proof
of Proposition 10:

Proposition 16 (Correctness of compiling |∼cr
R and |∼ws

R). Let R be a
knowledge base and A,B be formulas. Then:

A |∼cr
RB iff CCR(R)∪ {CCRR(B|A)} has a solution. (40)

A |∼ws
RB iff CCR(R)∪ {CCRR(B|A)} has a solution , and

CCR(R)∪ {CCRR(B|A)} has no solution.
(41)

Moreover, also Proposition 11 generalizes to credulous and weakly skeptical c-
inference since the result of the three compilation phases may be combined as it
is the case in (32)–(34). Since we could show that the different types of queries
can be compiled using similar structures, the benefits of caching the results
of knowledge base compilation as outlined in Sect. 7 also apply to computing
the inference relations |∼cr

R and |∼ws
R . This observation is again supported by

our evaluations using InfOCF that implements credulous and weakly skeptical
c-inference employing the compilation scheme developed in this paper.

9 Conclusions

For inference relations based on c-representations, we developed a 3-phase compi-
lation scheme enabling up to exponential time benefits when using the compiled
version of a knowledge base for answering queries. For credulous and weakly skep-
tical c-inference we presented a new method of realizing them as constraint sat-
isfaction problems and for compiling them. The compilation approach has been
implemented in the InfOCF system, exhibiting significant performance gains. Our
future work includes investigating compilation techniques for system P inference
and other forms of entailments from conditional knowledge bases.

Acknowledgements. This work was supported by DFG Grant BE 1700/9-1 of Prof.
Dr. Christoph Beierle as part of the priority program “Intentional Forgetting in Orga-
nizations” (SPP 1921). Kai Sauerwald is supported by this Grant. We thank the anony-
mous reviewers for their valuable hints and comments that helped us to improve the
paper.

References

1. Adams, E.: The Logic of Conditionals. D. Reidel, Dordrecht (1975)
2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,

Cambridge (1998)
3. Beierle, C., Eichhorn, C., Kern-Isberner, G.: Skeptical inference based on c-

representations and its characterization as a constraint satisfaction problem. In:
Gyssens, M., Simari, G. (eds.) FoIKS 2016. LNCS, vol. 9616, pp. 65–82. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30024-5 4

https://doi.org/10.1007/978-3-319-30024-5_4

Compilation of Conditional Knowledge Bases 53

4. Beierle, C., Eichhorn, C., Kern-Isberner, G., Kutsch, S.: Skeptical, weakly skeptical,
and credulous inference based on preferred ranking functions. In: ECAI-2016, vol.
285, pp. 1149–1157. IOS Press (2016)

5. Beierle, C., Eichhorn, C., Kutsch, S.: A practical comparison of qualitative infer-
ences with preferred ranking models. KI 31(1), 41–52 (2017)

6. Beierle, C., Kern-Isberner, G., Södler, K.: A declarative approach for comput-
ing ordinal conditional functions using constraint logic programming. In: Tom-
pits, H., Abreu, S., Oetsch, J., Pührer, J., Seipel, D., Umeda, M., Wolf, A. (eds.)
INAP/WLP -2011. LNCS (LNAI), vol. 7773, pp. 175–192. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41524-1 10

7. Beierle, C., Kutsch, S.: Comparison of inference relations defined over different sets
of ranking functions. In: Antonucci, A., Cholvy, L., Papini, O. (eds.) ECSQARU
2017. LNCS (LNAI), vol. 10369, pp. 225–235. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-61581-3 21

8. Beierle, C., Kutsch, S.: Regular and sufficient bounds of finite domain constraints
for skeptical c-inference. In: Benferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE 2017.
LNCS (LNAI), vol. 10350, pp. 477–487. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-60042-0 52

9. Benferhat, S., Dubois, D., Prade, H.: Possibilistic and standard probabilistic
semantics of conditional knowledge bases. J. Log. Comput. 9(6), 873–895 (1999)

10. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229–264 (2002)

11. de Finetti, B.: La prévision, ses lois logiques et ses sources subjectives. Ann. Inst.
Henri. Poincaré 7(1), 1–68 (1937). English translation in Kyburg, H., Smokler,
H.E. (eds.) Studies in Subjective Probability, pp. 93–158. Wiley, New York (1974)

12. Dubois, D., Prade, H.: Conditional objects as nonmonotonic consequence relations:
main results. In: Proceedings of the Fourth International Conference on Principles
of Knowledge Representation and Reasoning, KR 1994, San Francisco, CA, USA,
pp. 170–177. Morgan Kaufmann Publishers (1994)

13. Eiter, T., Lukasiewicz, T.: Complexity results for structure-based causality. Artif.
Intell. 142(1), 53–89 (2002)

14. Goldszmidt, M., Pearl, J.: On the Relation Between Rational Closure and System-
Z. UCLA, Computer Science Department (1991)

15. Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief
revision, and causal modeling. Artif. Intell. 84(1–2), 57–112 (1996)

16. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision.
LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44600-1

17. Kern-Isberner, G.: A thorough axiomatization of a principle of conditional preser-
vation in belief revision. Ann. Math. Artif. Intell. 40(1–2), 127–164 (2004)

18. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebra. In: Leech, J.
(ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press
(1970)

19. Lehmann, D.J., Magidor, M.: What does a conditional knowledge base entail?
Artif. Intell. 55(1), 1–60 (1992)

20. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0033845

https://doi.org/10.1007/978-3-642-41524-1_10
https://doi.org/10.1007/978-3-319-61581-3_21
https://doi.org/10.1007/978-3-319-61581-3_21
https://doi.org/10.1007/978-3-319-60042-0_52
https://doi.org/10.1007/978-3-319-60042-0_52
https://doi.org/10.1007/3-540-44600-1
https://doi.org/10.1007/3-540-44600-1
https://doi.org/10.1007/BFb0033845

54 C. Beierle et al.

21. Pearl, J.: System Z: a natural ordering of defaults with tractable applications to
nonmonotonic reasoning. In: Parikh, R. (ed.) Proceedings of the 3rd Conference on
Theoretical Aspects of Reasoning About Knowledge, TARK 1990, San Francisco,
CA, USA, pp. 121–135. Morgan Kaufmann Publishers Inc. (1990)

22. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27(1),
544–548 (1928)

23. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In:
Harper, W., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics,
II, pp. 105–134. Kluwer Academic Publishers (1988)

Characterizing and Computing Causes
for Query Answers in Databases

from Database Repairs
and Repair Programs

Leopoldo Bertossi(B)

School of Computer Science, Carleton University, Ottawa, Canada
bertossi@scs.carleton.ca

Abstract. A correspondence between database tuples as causes for
query answers in databases and tuple-based repairs of inconsistent
databases with respect to denial constraints has already been established.
In this work, answer-set programs that specify repairs of databases are
used as a basis for solving computational and reasoning problems about
causes. Here, causes are also introduced at the attribute level by appeal-
ing to a both null-based and attribute-based repair semantics. The cor-
responding repair programs are presented, and they are used as a basis
for computation and reasoning about attribute-level causes.

1 Introduction

Causality appears at the foundations of many scientific disciplines. In data and
knowledge management, the need to represent and compute causes may be
related to some form of uncertainty about the information at hand. More specifi-
cally in data management, we need to understand why certain results, e.g. query
answers, are obtained or not. Or why certain natural semantic conditions are not
satisfied. These tasks become more prominent and difficult when dealing with
large volumes of data. One would expect the database to provide explanations,
to understand, explore and make sense of the data, or to reconsider queries and
integrity constraints (ICs). Causes for data phenomena can be seen as a kind of
explanations.

Seminal work on causality in databases introduced in [32], and building on
work on causality as found in artificial intelligence, appeals to the notions of
counterfactuals, interventions and structural models [28]. Actually, [32] intro-
duces the notions of: (a) a database tuple as an actual cause for a query result,
(b) a contingency set for a cause, as a set of tuples that must accompany the
cause for it to be such, and (c) the responsibility of a cause as a numerical
measure of its strength (building on [19]).

L. Bertossi—Member of the “Millenium Institute for Foundational Research on
Data”, Chile.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 55–76, 2018.
https://doi.org/10.1007/978-3-319-90050-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_4&domain=pdf

56 L. Bertossi

Most of our research on causality in databases has been motivated by an
attempt to understand causality from different angles of data and knowledge
management. In [11], precise reductions between causality in databases, database
repairs, and consistency-based diagnosis were established; and the relationships
were investigated and exploited. In [12], causality in databases was related to
view-based database updates and abductive diagnosis. These are all interesting
and fruitful connections among several forms of non-monotonic reasoning; each
of them reflecting some form of uncertainty about the information at hand. In the
case of database repairs [8], it is about the uncertainty due the non-satisfaction of
given ICs, which is represented by presence of possibly multiple intended repairs
of the inconsistent database.

Database repairs can be specified by means of answer-set programs (or dis-
junctive logic programs with stable model semantics) [15,26,27], the so-called
repair-programs. Cf. [8,18] for details on repair-programs and additional refer-
ences. In this work we exploit the reduction of database causality to database
repairs established in [11], by taking advantage of repair programs for specifying
and computing causes, their contingency sets, and their responsibility degrees.
We show that the resulting causality-programs have the necessary and sufficient
expressive power to capture and compute not only causes, which can be done
with less expressive programs [32], but especially minimal contingency sets and
responsibilities (which provably require higher expressive power). Causality pro-
grams can also be used for reasoning about causes.

As a finer-granularity alternative to tuple-based causes, we introduce a par-
ticular form of attribute-based causes, namely null-based causes, capturing the
intuition that an attribute value may be the cause for a query to become true
in the database. This is done by profiting from an abstract reformulation of
the above mentioned relationship between tuple-based causes and tuple-based
repairs. More specifically, we appeal to null-based repairs that are a particu-
lar kind of attribute-based repairs, according to which the inconsistencies of a
database are solved by minimally replacing attribute values in tuples by NULL,
the null-value of SQL databases with its SQL semantics. We also define the cor-
responding notions of contingency set and responsibility. We introduce repair
(answer-set) programs for null-based repairs, so that the newly defined causes
can be computed and reasoned about.

Finally, we briefly show how causality-programs can be adapted to give an
account of other forms of causality in databases that are connected to other
possible repair-semantics for databases.

This paper is structured as follows. Section 2 provides background material
on relational databases, database causality, database repairs, and answer-set
programming (ASP). Section 3 establishes correspondences between causes and
repairs, and introduces in particular, null-based causes and repairs. Section 4
presents repair-programs to be used for tuple-based causality computation
and reasoning.1 Section 5 presents answer-set programs for null-based repairs
and null-based causes. Finally, Sect. 6, in more speculative terms, contains a

1 This section is a revised version of the extended abstract [13].

Characterizing and Computing Causes 57

discussion about research subjects that would naturally extend this work. In
order to better convey our main ideas and constructs, we present things by means
of representative examples. The general formulation is left for the extended ver-
sion of this paper.

2 Background

2.1 Relational Databases

A relational schema R contains a domain, C, of constants and a set, P, of predi-
cates of finite arities. R gives rise to a language L(R) of first-order (FO) predicate
logic with built-in equality, =. Variables are usually denoted by x, y, z, ..., and
sequences thereof by x̄, ...; and constants with a, b, c, ..., and sequences thereof
by ā, c̄, An atom is of the form P (t1, . . . , tn), with n-ary P ∈ P and t1, . . . , tn
terms, i.e. constants, or variables. An atom is ground, aka. a tuple, if it contains
no variables. Tuples are denoted with τ, τ1, A database instance, D, for R is a
finite set of ground atoms; and it serves as a (Herbrand) interpretation structure
for language L(R) [30] (cf. also Sect. 2.4).

A conjunctive query (CQ) is a FO formula of the form Q(x̄) : ∃ȳ (P1(x̄1) ∧
· · ·∧Pm(x̄m)), with Pi ∈ P, and (distinct) free variables x̄ := (

⋃
x̄i)� ȳ. If Q has

n (free) variables, c̄ ∈ Cn is an answer to Q from D if D |= Q[c̄], i.e. Q[c̄] is true in
D when the variables in x̄ are componentwise replaced by the values in c̄. Q(D)
denotes the set of answers to Q from D. Q is a boolean conjunctive query (BCQ)
when x̄ is empty; and when it is true in D, Q(D) := {true}. Otherwise, if it is
false, Q(D) := ∅. A view is predicate defined by means of a query, whose contents
can be computed, if desired, by computing all the answers to the defining query.

In this work we consider integrity constraints (ICs), i.e. sentences of L(R),
that are: (a) denial constraints (DCs), i.e. of the form κ : ¬∃x̄(P1(x̄1) ∧ · · · ∧
Pm(x̄m)) (sometimes denoted ← P1(x̄1), . . . , Pm(x̄m)), where Pi ∈ P, and x̄ =⋃

x̄i; and (b) functional dependencies (FDs), i.e. of the form ϕ : ¬∃x̄(P (v̄, ȳ1, z1)∧
P (v̄, ȳ2, z2) ∧ z1 �= z2). Here, x̄ = ȳ1 ∪ ȳ2 ∪ v̄ ∪ {z1, z2}, and z1 �= z2 is an
abbreviation for ¬z1 = z2.2 A key constraint (KC) is a conjunction of FDs:
∧k

j=1 ¬∃x̄(P (v̄, ȳ1) ∧ P (v̄, ȳ2) ∧ yj
1 �= yj

2), with k = |ȳ1| = |ȳ2|. A given schema
may come with its set of ICs, and its instances are expected to satisfy them.
If an instance does not satisfy them, we say it is inconsistent. In this work
we concentrate on DCs, excluding, for example, inclusion or tuple-generating
dependencies of the form ∀x̄(ϕ(x̄) → ∃ȳψ(x̄′, ȳ)), with x̄′ ⊆ x̄. See [1] for more
details and background material on relational databases.

2.2 Causality in Databases

A notion of cause as an explanation for a query result was introduced in [32], as
follows. For a relational instance D = Dn ∪ Dx, where Dn and Dx denote the
2 The variables in the atoms do not have to occur in the indicated order, but their

positions should be in correspondence in the two atoms.

58 L. Bertossi

mutually exclusive sets of endogenous and exogenous tuples, a tuple τ ∈ Dn is
called a counterfactual cause for a BCQ Q, if D |= Q and D � {τ} �|= Q. Now,
τ ∈ Dn is an actual cause for Q if there exists Γ ⊆ Dn, called a contingency set
for τ , such that τ is a counterfactual cause for Q in D � Γ . This definition is
based on [28].

The notion of responsibility reflects the relative degree of causality of a tuple
for a query result [32] (based on [19]). The responsibility of an actual cause τ for
Q, is ρ(τ) := 1

|Γ |+1 , where |Γ | is the size of a smallest contingency set for τ . If
τ is not an actual cause, ρ(τ) := 0. Intuitively, tuples with higher responsibility
provide stronger explanations.

The partition of the database into endogenous and exogenous tuples is
because the latter are somehow unquestioned, e.g. we trust them, or we may
have very little control on them, e.g. when obtained from an external, trustable
and indisputable data source, etc.; whereas the former are subject to experi-
mentation and questioning, in particular, about their role in query answering or
violation of ICs. The partition is application dependent, and we may not even
have exogenous tuples, i.e. Dn = D. Actually, in the following we will assume all
the tuples in a database instance are endogenous. (Cf. [11] for the general case,
and Sect. 6 for additional discussions.) The notion of cause as defined above
can be applied to monotonic queries, i.e. whose sets of answers may only grow
when the database grows [11].3 In this work we concentrate only on conjunctive
queries, possibly with built-in comparisons, such as �=.

Example 1. Consider the relational database D = {R(a4, a3), R(a2, a1), R(a3,
a3), S(a4), S(a2), S(a3)}, and the query Q: ∃x∃y(S(x) ∧ R(x, y) ∧ S(y)). D sat-
isfies the query, i.e. D |= Q.

S(a3) is a counterfactual cause for Q: if S(a3) is removed from D, Q is no
longer true. So, it is an actual cause with empty contingency set; and its respon-
sibility is 1. R(a4, a3) is an actual cause for Q with contingency set {R(a3, a3)}: if
R(a4, a3) is removed from D, Q is still true, but further removing the contingent
tuple R(a3, a3) makes Q false. The responsibility of R(a3, a3) is 1

2 . R(a3, a3) and
S(a4) are actual causes, with responsibility 1

2 . �

2.3 Database Repairs

We introduce the main ideas by means of an example. If only deletions and
insertions of tuples are admissible updates, the ICs we consider in this work can
be enforced only by deleting tuples from the database, not by inserting tuples
(we consider updates of attribute-values in Sect. 3.3). Cf. [8] for a survey on
database repairs and consistent query answering in databases.

Example 2. The database D = {P (a), P (e), Q(a, b), R(a, c)} is inconsistent with
respect to (w.r.t.) the (set of) denial constraints (DCs) κ1: ¬∃x∃y(P (x) ∧
Q(x, y)), and κ2: ¬∃x∃y(P (x) ∧ R(x, y)); that is, D �|= {κ1, κ2}.

3 E.g. CQs, unions of CQs (UCQs), Datalog queries are monotonic [11,12].

Characterizing and Computing Causes 59

A subset-repair, in short an S-repair, of D w.r.t. the set of DCs is a ⊆-
maximal subset of D that is consistent, i.e. no proper superset is consistent. The
following are S-repairs: D1 = {P (e), Q(a, b), R(a, b)} and D2 = {P (e), P (a)}. A
cardinality-repair, in short a C-repair, of D w.r.t. the set of DCs is a maximum-
cardinality, consistent subset of D, i.e. no subset of D with larger cardinality is
consistent. D1 is the only C-repair. �

For an instance D and a set Σ of DCs, the sets of S-repairs and C-repairs
are denoted with Srep(D,Σ) and Crep(D,Σ), resp.

2.4 Disjunctive Answer-Set Programs

We consider disjunctive Datalog programs Π with stable model semantics [23],
a particular class of answer-set programs (ASPs) [15]. They consist of a set E
of ground atoms, called the extensional database, and a finite number of rules of
the form

A1 ∨ . . . An ← P1, . . . , Pm, not N1, . . . , not Nk, (1)

with 0 ≤ n,m, k, and the Ai, Pj , Ns are positive atoms. The terms in these atoms
are constants or variables. The variables in the Ai, Ns appear all among those
in the Pj .

The constants in program Π form the (finite) Herbrand universe U of the
program. The ground version of program Π, gr(Π), is obtained by instantiat-
ing the variables in Π with all possible combinations of values from U . The
Herbrand base, HB , of Π consists of all the possible atomic sentences obtained
by instantiating the predicates in Π on U . A subset M of HB is a (Herbrand)
model of Π if it contains E and satisfies gr(Π), that is: For every ground rule
A1 ∨ . . . An ← P1, . . . , Pm, not N1, . . . , not Nk of gr(Π), if {P1, . . . , Pm} ⊆ M
and {N1, . . . , Nk} ∩ M = ∅, then {A1, . . . , An} ∩ M �= ∅. M is a minimal model
of Π if it is a model of Π, and no proper subset of M is a model of Π. MM (Π)
denotes the class of minimal models of Π.

Now, take S ⊆ HB(Π), and transform gr(Π) into a new, positive program
gr(Π) ↓ S (i.e. without not), as follows: Delete every ground instantiation of a
rule (1) for which {N1, . . . , Nk}∩S �= ∅. Next, transform each remaining ground
instantiation of a rule (1) into A1 ∨ . . . An ← P1, . . . , Pm. By definition, S is a
stable model of Π iff S ∈ MM (gr(Π) ↓ S). A program Π may have none, one
or several stable models; and each stable model is a minimal model (but not
necessarily the other way around) [27].

3 Causes and Database Repairs

In this section we concentrate first on tuple-based causes as introduced in
Sect. 2.2, and establish a reduction to tuple-based database repairs. Next we pro-
vide an abstract definition of cause on the basis of an abstract repair-semantics.
Finally, we instantiate the abstract semantics to define null-based causes from a
particular, but natural and practical notion of attribute-based repair.

60 L. Bertossi

3.1 Tuple-Based Causes from Repairs

In [11] it was shown that causes (as represented by database tuples)
for queries can be obtained from database repairs. Consider the BCQ
Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)) that is (possibly unexpectedly) true in D: D |= Q.
Actual causes for Q, their contingency sets, and responsibilities can be obtained
from database repairs. First, ¬Q is logically equivalent to the DC:

κ(Q): ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)). (2)

So, if Q is true in D, D is inconsistent w.r.t. κ(Q), giving rise to repairs of D
w.r.t. κ(Q).

Next, we build differences, containing a tuple τ , between D and S- or C-
repairs:

(a) Diff s(D,κ(Q), τ) = {D � D′ | D′ ∈ Srep(D,κ(Q)), τ ∈ (D � D′)}, (3)
(b) Diff c(D,κ(Q), τ) = {D � D′ | D′ ∈ Crep(D,κ(Q)), τ ∈ (D � D′)}. (4)

Proposition 1 [11]. For an instance D, a BCQ Q, and its associated DC κ(Q),
it holds:

(a) τ ∈ D is an actual cause for Q iff Diff s(D,κ(Q), τ) �= ∅.
(b) For each S-repair D′ with (D � D′) ∈ Diff s(D,κ(Q), τ), (D � (D′ ∪ {τ}))

is a subset-minimal contingency set for τ .
(c) If Diff s(Dκ(Q), τ) = ∅, then ρ(τ) = 0. Otherwise, ρ(τ) = 1

|s| , where s ∈
Diff s(D,κ(Q), τ) and there is no s′ ∈ Diff s(D,κ(Q), τ) with |s′| < |s|.

(d) τ ∈ D is a most responsible actual cause for Q iff Diff c(D,κ(Q), τ) �= ∅. �

Example 3 (Example 1 cont.). With the same instance D and query Q, we con-
sider the DC κ(Q): ¬∃x∃y(S(x) ∧ R(x, y) ∧ S(y)), which is not satisfied by
D. Here, Srep(D,κ(Q)) = {D1,D2,D3} and Crep(D,κ(Q)) = {D1}, with D1 =
{R(a4, a3), R(a2, a1), R(a3, a3), S(a4), S(a2)}, D2 = {R(a2, a1), S(a4), S(a2),
S(a3)}, D3 = {R(a4, a3), R(a2, a1), S(a2), S(a3)}.

For tuple R(a4, a3), Diff s(D,κ(Q), R(a4, a3)) = {D � D2} = {{R(a4, a3),
R(a3, a3)}}. So, R(a4, a3) is an actual cause, with responsibility 1

2 . Simi-
larly, R(a3, a3) is an actual cause, with responsibility 1

2 . For tuple S(a3),
Diff c(D,κ(Q), S(a3)) = {D � D1} = {S(a3)}. So, S(a3) is an actual cause,
with responsibility 1, i.e. a most responsible cause. �

It is also possible, the other way around, to characterize repairs in terms of
causes and their contingency sets [11]. Actually this connection can be used to
obtain complexity results for causality problems from repair-related computa-
tional problems [11]. Most computational problems related to repairs, especially
C-repairs, which are related to most responsible causes, are provably hard. This
is reflected in a high complexity for responsibility [11] (cf. Sect. 6 for some more
details).

Characterizing and Computing Causes 61

3.2 Abstract Causes from Abstract Repairs

We can extrapolate and abstract out from the characterization of causes of
Sect. 3.1 by starting from an abstract repair-semantics, RepS(D,κ(Q)), which
identifies a class of intended repairs of instance D w.r.t. the DC κ(Q). By def-
inition, RepS(D,κ(Q)) contains instances of D’s schema that satisfy κ(Q). It is
commonly the case that those instances depart from D in some pre-specified
minimal way, and, in the case of DCs, the repairs in RepS(D,κ(Q)) are all sub-
instances of D [8] (In Sect. 3.3, we will depart from this latter assumption.).

More concretely, given a possibly inconsistent instance D, a general class
of repair semantics can be characterized through an abstract partial-order rela-
tion, �D,4 on instances of D’s schema that is parameterized by D.5 If we want
to emphasize this dependence on the priority relation �D, we define the corre-
sponding class of repairs of D w.r.t. a set on ICs Σ as:

RepS�
(D,Σ) := {D′ | D′ |= Σ, and D′ is �D -minimal}. (5)

This definition is general enough to capture different classes of repairs and in
relation to different kinds of ICs, e.g. those that delete old tuples and intro-
duce new tuples to satisfy inclusion dependencies, and also repairs that change
attribute values. In particular, it is easy to verify that the classes of S- and
C-repairs for DCs of Sect. 2.3 are particular cases of this definition.

Returning to a general class of repairs RepS(D,κ(Q)), assuming that repairs
are sub-instances of D, and inspired by (3), we introduce:

Diff S(D,κ(Q), τ) := {D � D′ | D′ ∈ RepS(D,κ(Q)), τ ∈ (D � D′)}. (6)

Definition 1. For an instance D, a BCQ Q, and a class of repairs
RepS(D,κ(Q)):

(a) τ ∈ D is an actual S-cause for Q iff Diff S(D,κ(Q), τ) �= ∅.
(b) For each D′ ∈ RepS(D,κ(Q)) with (D �D′) ∈ Diff s(D,κ(Q), τ), (D � (D′ ∪

{τ})) is an S-contingency set for τ .
(c) The S-responsibility of an actual S-cause is as in Sect. 2.2, but considering

only the cardinalities of S-contingency sets Γ . �

It should be clear that actual causes as defined in Sect. 3.1 are obtained from
this definition by using S-repairs. Furthermore, it is also easy to see that each
actual S-cause accompanied by one of its S-contingency sets falsifies query Q
in D.

4 That is, satisfying reflexivity, transitivity and anti-symmetry, namely D1 �D

D2 and D2 �D D1 ⇒ D1 = D2.
5 These general prioritized repairs based on this kind of priority relations were intro-

duced in [34], where also different priority relations and the corresponding repairs
were investigated.

62 L. Bertossi

This abstract definition can be instantiated with different repair-semantics,
which leads to different notions of cause. In the following subsection we will
do this by appealing to attribute-based repairs that change attribute values in
tuples by null , a null value that is assumed to be a special constant in C, the
set of constants for the database schema. This will allow us, in particular, to
define causes at the attribute level (as opposed to tuple level) in a very natural
manner.6

3.3 Attribute-Based Causes

Database repairs that are based on changes of attribute values in tuples have
been considered in [7,8,10], and implicitly in [9] to hide sensitive information in
a database D via minimal virtual modifications of D. In the rest of this section
we make explicit this latter approach and exploit it to define and investigate
attribute-based causality (cf. also [11]). First we provide a motivating example.

Example 4. Consider the database instance D = {S(a2), S(a3), R(a3, a1),
R(a3, a4), R(a3, a5)}, and the query Q: ∃x∃y(S(x) ∧ R(x, y)). D satisfies Q, i.e.
D |= Q.

The three R-tuples in D are actual causes, but clearly the value a3 for the
first attribute of R is what matters in them, because it enables the join, e.g.
D |= S(a3) ∧ R(a3, a1). This is only indirectly captured through the occurrence
of different values accompanying a3 in the second attribute of R-tuples as causes
for Q.

Now consider the database instance D1 = {S(a2), S(a3), R(null , a1), R(null ,
a4), R(null , a5)}, where null stands for the null value as used in SQL databases,
which cannot be used to satisfy a join. Now, D′ �|= Q. The same occurs
with the instances D2 = {S(a2), S(null), R(a3, a1), R(a3, a4), R(a3, a5)}, and
D3 = {S(a2), S(null), R(null , a1), R(null , a4), R(null , a5)}, among others that
are obtained from D only through changes of attribute values by null . �

In the following we assume the special constant null may appear in database
instances and can be used to verify queries and constraints. We assume that all
atoms with built-in comparisons, say null θ null , and null θ c, with c a non-null
constant, are all false for θ ∈ {=, �=, <,>, . . .}. In particular, since a join, say
R(. . . , x)∧S(x, . . .), can be written as R(. . . , x)∧S(x′, . . .)∧x = x′, it can never
be satisfied through null . This assumption is compatible with the use of NULL
in SQL databases (cf. [10, Sect. 4] for a detailed discussion, also [9, Sect. 2]).

Consider an instance D = {. . . , R(c1, . . . , cn), . . .} that may be inconsistent
with respect to a set of DCs. The allowed repair updates are changes of attribute
values by null, which is a natural choice, because this is a deterministic solu-
tion that appeals to the generic data value used in SQL databases to reflect

6 Cf. also [10, Sects. 4, 5] for an alternative repair-semantics based on both null- and
tuple-based repairs w.r.t. general sets of ICs and their repair programs. They could
also be used to define a corresponding notion of cause.

Characterizing and Computing Causes 63

the uncertainty and incompleteness in/of the database that inconsistency pro-
duces.7 In order to keep track of changes, we may introduce numbers as first
arguments in tuples, as global, unique tuple identifiers (tids). So, D becomes
D = {. . . , R(i; c1, . . . , cn), . . .}, with i ∈ N. The tid is a value for what we call
the 0-th attribute of R. With id(t) we denote the id of the tuple t ∈ D, i.e.
id(R(i; c1, . . . , cn)) = i.

If D is updated to D′ by replacement of (non-tid) attribute values by null ,
and the value of the j-th attribute in R, j > 0, is changed to null , then the
change is captured as the string R[i; j], which identifies that the change was
made in the tuple with id i in the j-th position (or attribute) of predicate R.
These strings are collected forming the set:8

Δnull(D,D′) := {R[i; j] | R(i; c1, . . . , cj , . . . , cn) ∈ D, cj �= null , becomes
R(i; c′

1, . . . ,null , . . . , c′
n) ∈ D′}.

For example, if D = {R(1; a, b), S(2; c, d), S(3; e, f)} is changed into D′ =
{R(1; a,null), S(2;null , d), S(3;null ,null)}, then Δnull(D,D′) = {R[1; 2],
S[2; 1], S[3; 1], S[3; 2]}.

For database instances with the constant null , IC satisfaction is defined by
treating null as in SQL databases, in particular, joins and comparisons in them
cannot be satisfied through null (cf. [10, Sect. 4] for a precise formal treatment).
This is particularly useful to restore consistency w.r.t. DCs, which involve com-
binations of (unwanted) joins.

Example 5 (Example 1 cont.). Still with instance D = {S(a2), S(a3), R(a3,
a1), R(a3, a4), R(a3, a5)}, consider the DC (the negation of Q) κ : ¬∃x∃y(S(x)∧
R(x, z)). Since D �|= κ, D is inconsistent.

The updated instance D1 = {S(a2), S(null), R(a3, a1), R(a3, a4), R(a3, a5)}
(among others updated with null) is consistent: D1 |= κ. �

Definition 2. A null-based repair of D with respect to a set of DCs Σ is a
consistent instance D′, such that Δnull(D,D′) is minimal under set inclusion.9

Repnull(D,Σ) denotes the class of null-based repairs of D with respect to Σ.10

A cardinality-null-based repair D′ minimizes |Δnull(D,D′)|. �

7 Repairs based on updates of attribute values using other constants of the domain
have been considered in [35]. We think the developments in this section could be
applied to them.

8 The condition ci �= null in its definition is needed in case the initially given instance
already contain nulls.

9 An alternative, but equivalent formulation can be found in [9].
10 Our setting allows for a uniform treatment of general and combined DCs, including

those with (in)equality and other built-ins, FDs, and KCs. However, for the latter
and in SQL databases, it is common that NULL is disallowed as a value for a key-
attribute, among other issues. This prohibition, that we will ignore in this work, can
be accommodated in our definition. For a detailed treatment of repairs w.r.t. sets of
ICs that include FDs, see [10, Sects. 4, 5].

64 L. Bertossi

We can see that the null-based repairs are the minimal elements of the par-
tial order between instances defined by: D1 ≤null

D D2 iff Δnull(D,D1) ⊆
Δnull(D,D2).

Example 6. Consider D =
{
R(1; a2, a1), R(2; a3, a3), R(3; a4, a3), S(4; a2), S(5;

a3), S(6; a4)
}

that is inconsistent w.r.t. the DC

κ : ¬∃xy(S(x) ∧ R(x, y) ∧ S(y)).

Here, the class of null-based repairs, Repnull(D,κ), consists of:

D1 = {R(1; a2, a1), R(2; a3, a3), R(3; a4, a3), S(4; a2), S(5;null), S(6; a4)},

D2 = {R(1; a2, a1), R(2;null , a3), R(3; a4,null), S(4; a2), S(5; a3), S(6; a4)},

D3 = {R(1; a2, a1), R(2;null , a3), R(3; a4, a3), S(4; a2), S(5; a3), S(6;null)},

D4 = {R(1; a2, a1), R(2; a3,null), R(3; a4,null), S(4; a2), S(5; a3), S(6; a4)},

D5 = {R(1; a2, a1), R(2; a3,null), R(3;null , a3), S(4; a2), S(5; a3), S(6; a4)},

D6 = {R(1; a2, a1), R(2; a3,null), R(3; a4, a3), S(4; a2), S(5; a3), S(6;null)}.

Here, Δnull(D,D2) = {R[2; 1], R[3; 2]}, Δnull(D,D3) = {R[2; 1], S[6; 1]} and
Δnull(D,D1) = {S[5; 1]}. The latter is a cardinality-null-based repair. �

According to the motivation provided at the beginning of this section, we
can now define causes appealing to the generic construction in (6), and using
in it the class of null-based repairs of D. Since repair actions in this case are
attribute-value changes, causes can be defined at both the tuple and attribute
levels. The same applies to the definition of responsibility. First, inspired by (6),
for a tuple τ : R(i; c1, . . . , cn) ∈ D, we introduce:11

Diff null(D,κ(Q), R[i; cj]) := {Δnull(D,D′) | D′ ∈ Repnull(D,κ(Q)), (7)
R[i; j] ∈ Δnull(D,D′)}.

Definition 3. For D an instance and Q a BCQ, and τ ∈ D be a tuple of the
form R(i; c1, . . . , cn).

(a) R[i; cj] is a null-attribute-based (actual) cause for Q iff Diff null(D,
κ(Q, R[i; cj]) �= ∅, i.e. the value cj in τ is a cause if it is changed into a
null in some repair.

(b) τ is a null-tuple-based (actual) cause for Q if some R[i; cj] is a null-attribute-
based cause for Q, i.e. the whole tuple τ is a cause if at least one of its
attribute values is changed into a null in some repair.

(c) The responsibility, ρa-null(R[i; cj]), of a null-attribute-based cause R[i; cj] for
Q, is the inverse of min{|Δnull(D,D′)| : R[i; j] ∈ Δnull(D,D′), and D′ ∈
Repnull(D,κ(Q))}. Otherwise, it is 0.

11 This is not a particular case of (6), because it does not contain full tuples.

Characterizing and Computing Causes 65

(d) The responsibility, ρt-null(τ), of a null-tuple-based cause τ for Q, is the
inverse of min{|Δnull(D,D′)| : R[i; j] ∈ Δnull(D,D′), for some j, and
D′ ∈ Repnull(D,κ(Q))}. Otherwise, it is 0. �

In cases (c) and (d) we minimize over the number of changes in a repair.
However, in case (d), of a tuple-cause, any change made in one of its attributes
is considered in the minimization. For this reason, the minimum may be smaller
than the one for a fixed attribute value change; and so the responsibility at
the tuple level may be greater than that at the attribute level. More precisely,
if τ = R(i; c1, . . . , cn) ∈ D, and R[i; cj] is a null-attribute-based cause, then:
ρa-null(R[i; cj]) ≤ ρt-null(τ).

Example 7 (Example 6 cont.). Consider R(2; a3, a3) ∈ D. Its projection on
its first (non-id) attribute, R[2; a3], is a null-attribute-based cause since
R[2; 1] ∈ Δnull(D,D2). Also R[2; 1] ∈ Δnull(D,D3). Since |Δnull(D,D2)| =
|Δnull(D,D3)| = 2, we obtain ρa-null(R[2; 1]) = 1

2 . Clearly R(2; a3, a3) is a null-
tuple-based cause for Q, with ρt-null(R(2; a3, a3)) = 1

2 . �

Example 8 (Example 4 cont.). The instance with tids is D = {S(1; a2), S(2; a3),
R(3; a3, a1), R(4; a3, a4), R(5; a3, a5)}. The only null-based repairs are D1 and
D2, with Δnull(D,D1) = {R[3; 1], R[4; 1], R[5; 1]} and Δnull(D,D2) = {S[2; 1]}.

The values R[3; a3], R[4; a3], R[5; a3], S[2; a3] are all null-attribute-based
causes for Q. Notice that ρa-null(R[3; a3]) = ρa-null(R[4; a3]) = ρa-null(R[5;
a3]) = 1

3 , while ρa-null(R[3; a1]) = ρa-null(R[4; a4]) = ρa-null(R[5; a5]) = 0, that
the value (a3) in the first arguments of the R-tuples has a non-zero responsibility,
while the values in the second attribute have responsibility 0. �

Notice that the definition of tuple-level responsibility, i.e. case (d) in Defini-
tion 3, does not take into account that a same id, i, may appear several times
in a Δnull(D,D′). In order to do so, we could redefine the size of the latter by
taking into account those multiplicities. For example, if we decrease the size of
the Δ by one with every repetition of the id, the responsibility for a cause may
(only) increase, which makes sense.

In Sect. 5 we will provide repair programs for null-based repairs, which can
be used as a basis for specifying and computing null-attribute-based causes.

4 Specifying Tuple-Based Causes

Given a database D and a set of ICs, Σ, it is possible to specify the S-repairs
of D w.r.t. a set Σ of DCs, introduced in Sect. 2.3, by means of an answer-
set program Π(D,Σ), in the sense that the set, Mod(Π(D,Σ)), of its stable
models is in one-to-one correspondence with Srep(D,Σ) [5,18] (cf. [8] for more
references). In the following, to ease the presentation, we consider a single denial
constraint12

κ : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)).
12 It is possible to consider combinations of DCs and FDs, corresponding to UCQs,

possibly with �=, [11].

66 L. Bertossi

Although not necessary for S-repairs, it is useful on the causality side having
global unique tuple identifiers (tids), i.e. every tuple R(c̄) in D is represented
as R(t; c̄) for some integer t that is not used by any other tuple in D. For the
repair program we introduce a nickname predicate R′ for every predicate R ∈ R
that has an extra, final attribute to hold an annotation from the set {d, s},
for “delete” and “stays”, resp. Nickname predicates are used to represent and
compute repairs.

The repair-ASP, Π(D,κ), for D and κ contains all the tuples in D as facts
(with tids), plus the following rules:

P ′
1(t1; x̄1, d) ∨ · · · ∨ P ′

m(tn; x̄m, d) ← P1(t1; x̄1), . . . , Pm(tm; x̄m).
P ′

i (ti; x̄i, s) ← Pi(ti; x̄i), not P ′
i (ti; x̄i, d), i = 1, · · · ,m.

A stable model M of the program determines a repair D′ of D: D′ :=
{P (c̄) |P ′(t; c̄, s) ∈ M}, and every repair can be obtained in this way [18]. For
an FD, say ϕ : ¬∃xyz1z2vw(R(x, y, z1, v)∧R(x, y, z2, w)∧ z1 �= z2), which makes
the third attribute functionally depend upon the first two, the repair program
contains the rules:

R′(t1;x, y, z1, v, d) ∨ R′(t2;x, y, z2, w, d) ← R(t1;x, y, z1, v), R(t2;x, y, z2, w),
z1 �= z2.

R′(t;x, y, z, v, s) ← R(t;x, y, z, v), not R′(t;x, y, z, v, d).

For DCs and FDs, the repair program can be made non-disjunctive by moving all
the disjuncts but one, in turns, in negated form to the body of the rule [5,18].
For example, the rule P (a) ∨ R(b) ← Body , can be written as the two rules
P (a) ← Body ,notR(b) and R(b) ← Body ,notP (a). Still the resulting program
can be non-stratified if there is recursion via negation [27], as in the case of FDs,
and DCs with self-joins.

Example 9 (Example 3 cont.). For the DC κ(Q) : ¬∃x∃y(S(x) ∧ R(x, y) ∧
S(y)), the repair-ASP contains the facts (with tids) R(1; a4, a3), R(2; a2, a1),
R(3; a3, a3), S(4; a4), S(5; a2), S(6; a3), and the rules:

S′(t1;x, d) ∨ R′(t2;x, y, d) ∨ S′(t3; y, d) ← S(t1;x), R(t2;x, y), S(t3; y). (8)
S′(t;x, s) ← S(t;x), not S′(t;x, d). etc.

Repair D1 is represented by the stable model M1 con-
taining R′(1; a4, a3, s), R′(2; a2, a1, s), R′(3; a3, a3, s), S′(4; a4, s), S′(5; a2, s), and
S′(6; a3, d). �

Now, in order to specify causes by means of repair-ASPs, we concentrate,
according to (3), on the differences between D and its repairs, now represented
by {P (c̄) | P (t; c̄, d) ∈ M}, the deleted tuples, with M a stable model of the
repair-program. They are used to compute actual causes and their ⊆-minimal
contingency sets, both expressed in terms of tids.

Characterizing and Computing Causes 67

The actual causes for the query can be represented by their tids, and can be
obtained by posing simple queries to the program under the uncertain or brave
semantics that makes true what is true in some model of the repair-ASP.13 In this
case, Π(D,κ(Q)) |=brave Cause(t), where the Cause predicate is defined on top
of Π(D,κ(Q)) by the rules: Cause(t) ← R′(t;x, y, d) and Cause(t) ← S′(t;x, d).

For contingency sets for a cause, given the repair-ASP for a DC κ(Q), a new
binary predicate CauCont(·, ·) will contain a tid for cause in its first argument,
and a tid for a tuple belonging to its contingency set. Intuitively, CauCont(t, t′)
says that t is an actual cause, and t′ accompanies t as a member of the former’s
contingency set (as captured by the repair at hand or, equivalently, by the corre-
sponding stable model). More precisely, for each pair of not necessarily different
predicates Pi, Pj in κ(Q) (they could be the same if it has self-joins or there are
several DCs), introduce the rule CauCont(t, t′) ← P ′

i (t; x̄i, d), P ′
j(t

′; x̄j , d), t �= t′,
with the inequality condition only when Pi and Pj are the same predicate (it is
superfluous otherwise).

Example 10 (Examples 3 and 9 cont.). The repair-ASP can be extended with
the following rules to compute causes with contingency sets:

CauCont(t, t′) ← S′(t;x, d), R′(t′;u, v, d).
CauCont(t, t′) ← S′(t;x, d), S′(t′;u, d), t �= t′.
CauCont(t, t′) ← R′(t;x, y, d), S′(t′;u, d).
CauCont(t, t′) ← R′(t;x, y, d), R′(t′;u, v, d), t �= t′.

For the stable model M2 corresponding to repair D2, we obtain CauCont(1, 3)
and CauCont(3, 1), from the repair difference D � D2 = {R(a4, a3), R(a3, a3)}.

�

We can use extensions of ASP with set- and numerical aggregation to build

the contingency set associated to a cause, e.g. the DLV system [29] by means
of its DLV-Complex extension [17] that supports set membership and union as
built-ins. We introduce a binary predicate preCont to hold a cause (id) and a
possibly non-maximal set of elements from its contingency set, and the following
rules:

preCont(t, {t′}) ← CauCont(t, t′).
preCont(t,#union(C, {t′′})) ← CauCont(t, t′′), preCont(t, C),

not #member(t′′, C).
Cont(t, C) ← preCont(t, C), not HoleIn(t, C).

HoleIn(t, C) ← preCont(t, C),CauCont(t, t′),
not #member(t′, C).

The first two rules build the contingency set for an actual cause (within a repair
or stable model) by starting from a singleton and adding additional elements
13 As opposed to the skeptical or cautious semantics that sanctions as true what is true

in all models. Both semantics as supported by the DLV system [29].

68 L. Bertossi

from the contingency set. The third rule, that uses the auxiliary predicate HoleIn
makes sure that a set-maximal contingency set is built from a pre-contingency
set to which nothing can be added.

The responsibility for an actual cause τ , with tid t, as associated to a repair
D′ (with τ /∈ D′) associated to a model M of the extended repair-ASP, can
be computed by counting the number of t′s for which CauCont(t, t′) ∈ M .
This responsibility will be maximum within a repair (or model): ρ(t,M) :=
1/(1 + |d(t,M)|), where d(t,M) := {CauCont(t, t′) ∈ M}. This value can be
computed by means of the count function, supported by DLV [24], as follows:

pre-rho(t, n) ← #count{t′ : CauCont(t, t′)} = n,

followed by the rule computing the responsibility:

rho(t,m) ← m ∗ (pre-rho(t, n) + 1) = 1.

Or, equivalently, via 1/|d(M)|, with d(M) := {P (t′; c̄, d) | P (t′; c̄, d) ∈ M}.
Each model M of the program so far will return, for a given tid that is

an actual cause, a maximal-responsibility contingency set within that model: no
proper subset is a contingency set for the given cause. However, its cardinal-
ity may not correspond to the (global) maximum responsibility for that tuple.
Actually, what we need is ρ(t) := max{ρ(t,M) | M is a model}, which would
be an off-line computation, i.e. not within the program. Fortunately, this is not
needed since each C-repair gives such a global maximum. So, we need to specify
and compute only maximum-cardinality repairs, i.e. C-repairs.

C-repairs can be specified by means of repair-ASPs as above [3], but adding
weak-program constraints [16,29]. In this case, since we want repairs that mini-
mize the number of deleted tuples, for each database predicate P , we introduce
the weak-constraint:

:∼ P (t; x̄), P ′(t; x̄, d).

In a model M the body can be satisfied, and then the program constraint vio-
lated, but the number of violations is kept to a minimum (among the mod-
els of the program without the weak-constraints).14 A repair-ASP with these
weak constraints specifies repairs that minimize the number of deleted tuples;
and minimum-cardinality contingency sets and maximum responsibilities can be
computed, as above.

The approach to specification of causes can be straightforwardly extended
via repair programs for several DCs to deal with unions of BCQs (UBCQs),
which are also monotonic.

Example 11. Consider D = {P (a), P (e), Q(a, b), R(a, c)} and the query Q :=
Q1∨Q2, with Q1 : ∃xy(P (x)∧Q(x, y)) and Q2 : ∃xy(P (x)∧R(x, y)). It generates

14 In contrast, hard program-constraints, of the form ← Body , eliminate the models
where they are violated, i.e. where Body is satisfied. Weak constraints as those above
are sometimes denoted with ⇐ P (t; x̄), P ′(t; x̄, d).

Characterizing and Computing Causes 69

the set of DCs: Σ = {κ1, κ2}, with κ1 :← P (x), Q(x, y) and κ2 :← P (x), R(x, y).
Here, D |= Q and, accordingly, D is inconsistent w.r.t. Σ.

The actual causes for Q in D are: P (a), Q(a, b), R(a, c), and P (a) is the most
responsible cause. D1 = {P (a), P (e)} and D2 = {P (e), Q(a, b), R(a, c)} are the
only S-repairs; D2 is also the only C-repair for D. The repair program for D
w.r.t. Σ contains one rule like (8) for each DC in Σ. The rest is as above in this
section. �

Remark 1. When dealing with a set of DCs, each repair rule of the form (8)
is meant to solve the corresponding, local inconsistency, even if there is inter-
action between the DCs, i.e. atoms in common, and other inconsistencies are
solved at the same time. However, the minimal-model property of stable models
makes sure that in the end a minimal set of atoms is deleted to solve all the
inconsistencies [18]. �

5 Specifying Attribute-Based Repairs and Causes

Example 12. Consider the instance D = {P (1, 2), R(2, 1)} for schema
R = {P (A,B), R(B,C)}. With tuple identifiers it takes the form D =
{P (1; 1, 2), R(2; 2, 1)}. Consider also the DC:15

κ : ¬∃x∃y∃z(P (x, y) ∧ R(y, z)), (9)

which is violated by D.
Now, consider the following alternative, updated instances Di, each them

obtained by replacing attribute values by null :

D1 {P (1; 1,null), R(2; 2, 1)}
D2 {P (1; 1, 2), R(2;null , 1)}
D3 {P (1; 1,null), R(2;null , 1)}

The sets of changes can be identified with the set of changed positions, as in
Sect. 3.3, e.g. Δnull(D,D1) = {P [1; 2]} and Δnull(D,D2) = {R[2; 2]} (remember
that the tuple id goes always in position 0). These Di are all consistent, but D1

and D2 are the only null-based repairs of D; in particular they are ≤null
D -minimal:

The sets of changes Δnull(D,D1) and Δnull(D,D2) are incomparable under set
inclusion. D3 is not ≤null

D -minimal, because Δnull(D,D3) = {P [1; 2], R[2; 2]} �

Δnull(D,D2). �

As in Sect. 4, null-based repairs can be specified as the stable models of a dis-

junctive ASP, the so-called repair program. We show next these repair programs
by means of Example 12.

The repair-programs for null-based repairs are inspired by ASP-programs
that are used to specify virtually and minimally updated versions of a database
15 It would be easy to consider tids in queries and view definitions, but they do not

contribute to the final result and will only complicate the notation. So, we skip tuple
ids whenever possible.

70 L. Bertossi

D that is protected from revealing certain view contents [9]. This is achieved by
replacing direct query answering on D by simultaneously querying (under the
certain semantics) the virtual versions of D.

When we have more than one DC, notice that, in contrast to the tuple-based
semantics, where we can locally solve each inconsistency without considering
inconsistencies w.r.t. other DCs (cf. Remark 1), a tuple that is subject to a local
attribute-value update (into null) to solve one inconsistency, may need further
updates to solve other inconsistencies. For example, if we add in Example 12
the DC κ′ : ¬∃x∃y(P (x, y) ∧ R(y, x)), the updates in repair D1 have to be fur-
ther continued, producing: P (1;null ,null), R(2;null ,null). In other words, every
locally updated tuple is considered to: “be in transition” or “being updated” only
(not necessarily in a definitive manner) until all inconsistencies are solved.

The above remark motivates the annotation constants that repair programs
will use now, for null-based repairs. The intended, informal semantics of annota-
tion constants is shown in the following table. (The precise semantics is captured
through the program that uses them.)

Annotation Atom The tuple R(ā) ...

u R(t; ā,u) Tuple result of an update

fu R(t; ā, fu) Final update of a tuple

t R(t; ā, t) An initial or updated tuple

s R(t; ā, s) Definitive, stays in the repair

More precisely, for each database predicate R ∈ R, we introduce a copy
of it with an extra, final attribute (or argument) that contains an annotation
constant. So, a tuple of the form R(t; c̄) would become an annotated atom of
the form R′(t; c̄,a). The annotation constants are used to keep track of virtual
updates, i.e. of old and new tuples: An original tuple R(t; c̄) may be successively
updated, each time replacing an attribute value by null , creating tuples of the
form R(t; c̄′,u). Eventually the tuple will suffer no more updates, at which point
it will become of the form R′(t; c̄′′, fu). In the transition, to check the satisfaction
of the DCs, it will be combined with other tuples, which can be updated versions
of other tuples or tuples in the database that have never been updated. Both
kinds of tuples are uniformly annotated with R′(t′, d̄, t). In this way, several,
possibly interacting DCs can be handled. The tuples that eventually form a
repaired version of the original database are those of the form R′(t; ē, s), and are
the final versions of the updated original tuples or the original tuples that were
never updated.

In R′(t; ā, fu), annotation fu means that the atom with tid t has reached its
final update (during the program evaluation). In particular, R(t; ā) has already
been updated, and u should appear in the new, updated atom, say R′(t; ā′,u),
and this tuple cannot be updated any further (because relevant updateable
attribute values have already been replaced by null if necessary). For example,

Characterizing and Computing Causes 71

consider a tuple R(t; a, b) ∈ D. A new tuple R(t; a,null) is obtained by updating
b into null . Therefore, R′(t; a,null ,u) denotes the updated tuple. If this tuple
is not updated any further, it will also eventually appear as R′(t; a,null , fu),
indicating it is a final update.16 (Cf. rules 3. in Example 13.)

The repair program uses these annotations to go through different steps, until
its stable models are computed. Finally, the atoms needed to build a repair are
read off by restricting a model of the program to atoms with the annotation s.
The following example illustrates the main ideas and issues.

Example 13 (Example 12 cont.). Consider D = {P (1, 2), R(2, 1)} and the DC:
κ : ¬∃x∃y∃z(P (x, y) ∧ R(y, z)). The repair program Π(D, {κ}) is as follows: (it
uses several auxiliary predicates to make rules safe, i.e. with all their variables
appearing in positive atoms in their bodies)

1. P (1; 1, 2). R(2; 2, 1). (initial database)
2. P ′(t1;x,null ,u) ∨ R′(t2;null , z,u) ← P ′(t1;x, y, t), R′(t2; y, z, t), y �= null .
3. P ′(t;x, y, fu)← P ′(t;x, y,u),not auxP.1(t;x, y), not auxP.2(t;x, y).

auxP.1(t;x, y) ← P ′(t;null , y,u), P (t;x, z), x �= null .
auxP.2(t;x, y) ← P ′(t;x,null ,u), P (t; z, y), y �= null . (idem for R)

4. P ′(t;x, y, t) ←P (t;x, y).
P ′(t;x, y, t) ← P ′(t;x, y,u). (idem for R)

5. P ′(t;x, y, s) ←P ′(t;x, y, fu). (idem for R)
P ′(t;x, y, s) ←P (t;x, y), not auxP (t).

auxP (t) ← P ′(t;u, v,u).

In this program tids in rules are handled as variables. Constant null in the
program is treated as any other constant. This is the reason for the condition
y �= null in the body of 2, to avoid considering the join through null a violation
of the DC.17 A quick look at the program shows that the original tids are never
destroyed and no new tids are created, which simplifies keeping track of tuples
under repair updates. It also worth mentioning that for this particular example,
with a single DC, a much simpler program could be used, but we keep the general
form that can be applied to multiple, possibly interacting DCs.

Facts in 1. belong to the initial instance D, and become annotated right
away with t by rules 4. The most important rules of the program are those in
2. They enforce one step of the update-based repair-semantics in the presence
of null and using null (yes, already having nulls in the initial database is not a
problem). Rules in 2. capture in the body the violation of DC; and in the head,
the intended way of restoring consistency, namely making one of the attributes
participating in a join take value null .
16 Under null-based repairs no tuples are deleted or inserted, so the original tids stay

all in the repairs and none is created.
17 If instead of (9) we had κ : ¬∃x∃y∃z(P (x, y) ∧ R(y, z) ∧ y < 3), the new rule body

could be P ′(t1; x, y, t), R′(t2; y, z, t), y < 3, because null < 3 would be evaluated as
false.

72 L. Bertossi

Rules in 3. collect the final updated versions of the tuples in the database,
as those whose values are never replaced by a null in another updated version.

Rules in 4. annotate the original atoms and also new versions of updated
atoms. They all can be subject to additional updates and have to be checked for
DC satisfaction, with rule 2. Rules in 5. collect the tuples that stay in the final
state of the updated database, namely the original and never updated tuples
plus the final, updated versions of tuples. In this program null is treated as any
other constant. �

Proposition 2. There is a one-to-one correspondence between the null -based
repairs of D w.r.t. a set of DCs Σ and the stable models of the repair program
Π(D,Σ). More specifically, a repair D′ can be obtained by collecting the s-
annotated atoms in a stable model M , i.e. D′ = {P (c̄) | P ′(t; c̄, s) ∈ M}; and
every repair can be obtained in this way.18 �

Example 14 (Example 13 cont.). The program has two stable models: (the facts
in 1. and the aux-atoms are omitted)

M1 = {P ′(1; 1, 2, t), R′(2; 2, 1, t), R′(2; 2, 1, s), P ′(1; 1,null ,u), P ′(1; 1,null , t),

P ′(1; 1,null , fu), P ′(1; 1,null , s)}.

M2 = {P ′(1; 1, 2, t), R′(2; 2, 1, t), P ′(1; 1, 2, s), R′(2;null , 1,u), R′(2;null , 1, t),

R′(2;null , 1, fu), R′(2;null , 1, s)}.

The repairs are built by selecting the underlined atoms: D1 = {P (1,null),
R(2, 1)} and D2 = {P (1, 2), R(null , 1)}. They coincide with those in Exam-
ple 12. �

Finally, and similarly to the use of repair programs for cause computation
in Sect. 4, we can use the new repair programs to compute null-attribute-based
causes (we do not consider here null-tuple-based causes, nor the computation of
responsibilities, all of which can be done along the lines of Sect. 4). All we need
to do is add to the repair program the definition of a cause predicate, through
rules of the form:

Cause(t; i; v) ← R′(t; x̄,null , z̄, s), R(t; x̄′, v, z̄′), v �= null ,

(with v and null the body in the same position i), saying that value v in the
i-th position in original tuple with tid t is a null-attribute-based cause. The rule
collects the original values (with their tids and positions) that have been changed
into null . To the program in Example 13 we would add the rules (with similar
rules for predicate R)

Cause(t; 1;x) ← P ′(t;null , y, s), P (t;x, y′).
Cause(t; 2; y) ← P ′(t;x,null , s), P (t;x′, y).

18 The proof of this claim is rather long, and is similar in spirit to the proof that tuple-
based database repairs w.r.t. integrity constraints [6,8] can be specified by means of
disjunctive logic programs with stable model semantics (cf. [4,14]).

Characterizing and Computing Causes 73

6 Discussion

Complexity. Computing causes for CQs can be done in polynomial time in data
[32], which also holds for UBCQs [11]. In [12] it was established that cause com-
putation for Datalog queries falls in the second level of the polynomial hierarchy
(PH). As has been established in [11,32], the computational problems associ-
ated to contingency sets and responsibility are at the second level of PH, in data
complexity.

On the other side, our repairs programs, and so our causality-ASPs, can be
transformed into non-disjunctive, unstratified programs [5,18], whose reasoning
tasks are also at the second level of PH (in data) [22]. It is worth mentioning
that the ASP approach to causality via repairs programs could be extended to
deal with queries that are more complex than CQs or UCQs, e.g. Datalog queries
and queries that are conjunctions of literals (that were investigated in [33]).

Causality Programs and ICs. The original causality setting in [32] does not
consider ICs. An extension of causality under ICs was proposed in [12]. Under
it, the ICs have to be satisfied by the databases involved, i.e. the initial one and
those obtained by cause and contingency-set deletions. When the query at hand
is monotonic,19 monotonic ICs, i.e. for which growing with the database may
only produce more violations (e.g. denial constraints and FDs), are not much
of an issue since they stay satisfied under deletions associated to causes. So,
the most relevant ICs are non-monotonic, such as inclusion dependencies, e.g.
∀xy(R(x, y) → S(x)). These ICs can be represented in a causality-program by
means of (strong) program constraints. In the running example, we would have,
for tuple-based causes, the constraint: ← R′(t, x, y, s),not S′(t′, x, s).20

Negative CQs and Inclusion Dependencies. In this work we investigated CQs,
and what we did can be extended to UCQs. However, it is possible to consider
queries that are conjunctions of literals, i.e. atoms or negations thereof, e.g.
Q : ∃x∃y(P (x, y)∧¬S(x)).21 (Causes for these queries were investigated in [33].)
If causes are defined in terms of counterfactual deletions (as opposed to insertions
that can also be considered for these queries), then the repair counterpart can be
constructed by transforming the query into the unsatisfied inclusion dependency
(ID): ∀x∀y(P (x, y) → S(x)). Repairs w.r.t. this kind of IDs that allow only tuple
deletions were considered in [20], and repairs programs for them in [18]. Causes
for CQs in the presence of IDs were considered in [12].

Endogenous and Prioritized Causes and Repairs. As indicated in Sect. 3.2, differ-
ent kinds of causes can be introduced by considering different repair-semantics.
Apart from those investigated in this work, we could consider endogenous repairs,
19 I.e. the set of answers may only grow when the instance grows.
20 Or better, to make it safe, by a rule and a constraint: aux(x) ← S′(t′, x, s) and

← R′(t, x, y, s),not aux(x).
21 They should be safe in the sense that a variable in a negative literals has to appear

in some positive literal too.

74 L. Bertossi

which are obtained by removing only (pre-specified) endogenous tuples [11]. In
this way we could give an account of causes as in Sect. 2.2, but considering the
partition of the database between endogenous and exogenous tuples.

Again, considering the abstract setting of Section 3.2, with the generic class of
repairs RepS�

(D,Σ), it is possible to consider different kinds of prioritized repairs
[34], and through them introduce prioritized actual causes. Repair programs for
the kinds of priority relations � investigated in [34] could be constructed from
the ASPs introduced and investigated in [25] for capturing different optimality
criteria. The repair programs could be used, as done in this work, to specify and
compute the corresponding prioritized actual causes and responsibilities.

Optimization of Causality Programs. Different queries, but of a fixed form, about
causality could be posed to causality programs or directly to the underlying
repair programs. Query answering could benefit from query-dependent, magic-
set-based optimizations of causality and repair programs as reported in [18].
Implementation and experimentation in general are left for future work.

Connections to Belief Revision/Update. As discussed in [2] (cf. also [8]), there
are some connections between database repairs and belief updates as found in
knowledge representation, most prominently with [21]. In [3], some connections
were established between repair programs and revision programs [31]. The appli-
cability of the latter in a causality scenario like ours becomes a matter of possible
investigation.

Acknowledgements. This research was supported by NSERC Discovery Grant
#06148. Part of this work was done while the author was spending a sabbatical at
the “Database and Artificial Intelligence” Group of the Technical University of Vienna
with support from the “Vienna Center for Logic and Algorithms” and the Wolfgang
Pauli Society. The author is extremely grateful for their support and hospitality, and
especially to Prof. Georg Gottlob for making the stay possible. Many thanks to the
anonymous reviewers for their excellent feedback.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proceedings of PODS, pp. 68–79 (1999)

3. Arenas, M., Bertossi, L., Chomicki, J.: Answer sets for consistent query answers.
Theor. Pract. Log. Program. 3(4&5), 393–424 (2003)

4. Barcelo, P.: Applications of annotated predicate calculus and logic programs to
querying inconsistent databases. MSc thesis PUC, Chile (2002). http://people.scs.
carleton.ca/∼bertossi/papers/tesisk.pdf

5. Barceló, P., Bertossi, L., Bravo, L.: Characterizing and computing semantically
correct answers from databases with annotated logic and answer sets. In: Bertossi,
L., Katona, G.O.H., Schewe, K.-D., Thalheim, B. (eds.) SiD 2001. LNCS, vol. 2582,
pp. 7–33. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36596-6 2

http://people.scs.carleton.ca/~bertossi/papers/tesisk.pdf
http://people.scs.carleton.ca/~bertossi/papers/tesisk.pdf
https://doi.org/10.1007/3-540-36596-6_2

Characterizing and Computing Causes 75

6. Bertossi, L.: Consistent query answering in databases. ACM SIGMOD Rec. 35(2),
68–76 (2006)

7. Bertossi, L., Bravo, L., Franconi, E., Lopatenko, A.: The complexity and approxi-
mation of fixing numerical attributes in databases under integrity constraints. Inf.
Syst. 33(4), 407–434 (2008)

8. Bertossi, L.: Database Repairing and Consistent Query Answering. Synthesis Lec-
tures on Data Management. Morgan & Claypool, San Rafael (2011)

9. Bertossi, L., Li, L.: Achieving data privacy through secrecy views and null-based
virtual updates. IEEE Trans. Knowl. Data Eng. 25(5), 987–1000 (2013)

10. Bertossi, L., Bravo, L.: Consistency and trust in peer data exchange systems.
Theor. Pract. Log. Program. 17(2), 148–204 (2017)

11. Bertossi, L., Salimi, B.: From causes for database queries to repairs and model-
based diagnosis and back. Theor. Comput. Syst. 61(1), 191–232 (2017)

12. Bertossi, L., Salimi, B.: Causes for query answers from databases: datalog abduc-
tion, view-updates, and integrity constraints. Int. J. Approx. Reason. 90, 226–252
(2017)

13. Bertossi, L.: The causality/repair connection in databases: causality-programs. In:
Moral, S., Pivert, O., Sánchez, D., Maŕın, N. (eds.) SUM 2017. LNCS (LNAI), vol.
10564, pp. 427–435. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67582-4 33

14. Bravo, L.: Handling inconsistency in databases and data integration systems.
Ph.D. thesis, Carleton University, Department of Computer Science (2007). http://
people.scs.carleton.ca/∼bertossi/papers/Thesis36.pdf

15. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 93–103 (2011)

16. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints.
IEEE Tran. Knowl. Data Eng. 12(5), 845–860 (2000)

17. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: An ASP system with functions, lists,
and sets. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI),
vol. 5753, pp. 483–489. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04238-6 46

18. Caniupan-Marileo, M., Bertossi, L.: The consistency extractor system: answer set
programs for consistent query answering in databases. Data Know. Eng. 69(6),
545–572 (2010)

19. Chockler, H., Halpern, J.Y.: Responsibility and blame: a structural-model app-
roach. J. Artif. Intell. Res. 22, 93–115 (2004)

20. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple
deletions. Inf. Comput. 197(1–2), 90–121 (2005)

21. Chou, T., Winslett, M.: A model-based belief revision system. J. Autom. Reason.
12, 157–208 (1994)

22. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

23. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans. Database
Syst. 22(3), 364–418 (1997)

24. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implemen-
tation of aggregate functions in the DLV system. Theor. Pract. Log. Program.
8(5–6), 545–580 (2008)

25. Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set pro-
gramming. Theor. Pract. Log. Program. 11(4–5), 821–839 (2011)

https://doi.org/10.1007/978-3-319-67582-4_33
https://doi.org/10.1007/978-3-319-67582-4_33
http://people.scs.carleton.ca/~bertossi/papers/Thesis36.pdf
http://people.scs.carleton.ca/~bertossi/papers/Thesis36.pdf
https://doi.org/10.1007/978-3-642-04238-6_46
https://doi.org/10.1007/978-3-642-04238-6_46

76 L. Bertossi

26. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers, San Rafael (2012)

27. Gelfond, M., Kahl, Y.: Knowledge Representation and Reasoning, and the Design
of Intelligent Agents. Cambridge University Press, Cambridge (2014)

28. Halpern, J., Pearl, J.: Causes and explanations: a structural-model approach: part
1. Br. J. Philos. Sci. 56, 843–887 (2005)

29. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Log. 7(3), 499–562 (2006)

30. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987).
https://doi.org/10.1007/978-3-642-83189-8

31. Marek, V., Truszczynski, M.: Revision programming. Theor. Comput. Sci. 190(2),
241–277 (1998)

32. Meliou, A., Gatterbauer, W., Moore, K.F., Suciu, D.: The complexity of causality
and responsibility for query answers and non-answers. Proc. VLDB Endow. 4(1),
34–45 (2010)

33. Salimi, B., Bertossi, L., Suciu, D., Van den Broeck, G.: Quantifying causal effects
on query answering in databases. In: Proceedings of TaPP (2016)

34. Staworko, S., Chomicki, J., Marcinkowski, J.: Prioritized repairing and consistent
query answering in relational databases. Ann. Math. Artif. Intell. 64(2–3), 209–246
(2012)

35. Wijsen, J.: Database repairing using updates. ACM Trans. Database Syst. 30(3),
722–768 (2005)

https://doi.org/10.1007/978-3-642-83189-8

Inferences from Attribute-Disjoint
and Duplicate-Preserving
Relational Fragmentations

Joachim Biskup(B) and Marcel Preuß

Fakultät für Informatik, Technische Universität Dortmund, Dortmund, Germany
{joachim.biskup,marcel.preuss}@cs.tu-dortmund.de

Abstract. The transmission of own and partly confidential data to
another agent, e.g., for cloud computing, comes along with the risk of
enabling the receiver to infer information he is not entitled to learn. We
consider a specific countermeasure against unwanted inferences about
associations between data values whose combination of attributes are
declared to be sensitive. This countermeasure fragments a relation
instance into attribute-disjoint and duplicate-preserving projections such
that no sensitive attribute combination is contained in any projection.
Though attribute-disjointness is intended to make a reconstruction of
original data impossible for the receiver, the goal of inference-proofness
will not always be accomplished. In particular, inferences might be based
on combinatorial effects, since duplicate-preservation implies that the fre-
quencies of value associations in visible projections equals those in the
original relation instance. Moreover, the receiver might exploit functional
dependencies, numerical dependencies and tuple-generating dependen-
cies, as presumably known from the underlying database schema. We
identify several conditions for a fragmentation to violate inference-
proofness. Besides complementing classical results about lossless decom-
positions, our results could be employed for designing better counter-
measures.

Keywords: Attribute-disjointness · Cloud computing
Database relation · Confidentiality · Duplicate-preservation
Fragmentation · Frequencies · Functional dependency
Inference-proofness · Numerical dependency · Projection
Sensitive association · Tuple-generating dependency

1 Introduction

A data owner might consider to somehow fragment his relational data and to only
make the resulting fragments accessible to another agent, which, for a promi-
nent example, might offer some cloud services to the owner. Such a fragmentation
then aims at hiding some information about sensitive associations contained in
the original data to the service agent. Thus, though in principle being seen as
c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 77–96, 2018.
https://doi.org/10.1007/978-3-319-90050-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_5&domain=pdf

78 J. Biskup and M. Preuß

cooperating, the service agent is also perceived as potentially attacking the con-
fidentiality interests of the owner by attempting to infer hidden original informa-
tion from accessible data and, if applicable, additional background knowledge.
Accordingly, the data owner should carefully choose a fragmentation technique
and thoroughly investigate whether the resulting fragmentation of his specific
data sufficiently satisfies his confidentiality interests.

Our considerations are motivated by the particular proposal of “combining
fragmentation and encryption to protect privacy in data storage” [14], a tech-
nique which converts a given relation instance and some confidentiality require-
ments on the schema level into a set of vertical relational fragments all of which
might be accessible for an attacker. We focus on three aspects of this proposal:

– The resulting fragmentation is attribute-disjoint, i.e., fragments do not share
attributes and thus seem to be unrelated. Moreover, regarding internal storage
and external display, the sequence of subtuple instances in a fragment is
supposed to be fully independent of the sequences in other fragments, and of
any sequence of tuple instances in the hidden data as well.

– Each fragment is duplicate-preserving and thus, for any values under
attributes in the fragment, their frequency (i.e., number of occurrences) in
the fragment is equal to their frequency in the hidden underlying relation
instance.

– The attacker might see all fragments, and thus he is supposed to take advan-
tage of knowing several views on the same hidden data.

Focusing on the enforcement of confidentiality requirements by means of frag-
mentation, we will purposely ignore all cryptographic aspects and neglect the
details of reconstructability of the original data by the data owner. For further
simplifying our investigations, we will also assume that none of the attributes
get encrypted values:

– The fragmentation is full, i.e., it covers all attributes of the original relation.

For this setting, we will discuss various kinds of successful inference attacks
based on observable frequencies of visible data items and on additional back-
ground knowledge in the form of data dependencies and actual content data, in
spite of the attribute-disjointness at first glance generating unrelated fragments.
In doing so, we will present some fundamental assertions about such inferences,
together with some complexity considerations. The resulting main contribution
will be the identification of both the crucial role of frequencies and the challenge
to future research how to block their exploitation.

Example 1 (Fragmentation with encryption). This example illustrates the
techniques proposed by Ciriani et al. [14] by means of a simple relational
schema Patient providing attributes Action, S(ocial)S(ecurity)N(umber),
(Patient)Name, Illness, (Prescribed) Medication, HurtBy, and (Treating)
Doctor to record a unique tuple instance for each medical action. Figure 1
shows a relation instance containing 4 tuple instances.

Inferences from Attribute-Disjoint and Duplicate-Preserving 79

Fig. 1. A relation instance for the relational schema Patient

Fig. 2. A simplified fragmentation (without encryption related parts needed for recon-
struction by the owner) of the relation instance of the schema Patient

Suppose that the owner wants to hide values of the singleton attribute set
{SSN}, and value combinations for associations expressed by the non-singleton
attribute sets {Name,Doctor}, {Name,Medication}, {Name,HurtBy},
and {Illness,HurtBy}, respectively. Single values can only be protected by
encryption. But value combinations of a sensitive association can be handled by
fragmentation, i.e., by distributing the values occurring in an association among
different fragments obtained by projections without duplicate removal, under
the condition that the fragments do not overlap and, thus, are not obviously
linked. One possible option is to partition the attributes of the schema – in
this example except SSN – into the mutually disjoint sets {Action,Name},
{Illness,Doctor}, and {Medication,HurtBy}. Then, for each of them a
fragment is generated that makes the values of the attribute set visible and
stores the encryption of all remaining values under a new attribute, say Enc.
In principle, but no longer considered in the remainder, we would have to manage
the encrypted parts to enable the data owner to reconstruct the original tuple
instances. And we have to suitably scramble the (sub)tuple instances generated
for a fragment to block inferences based on their sequence displayed. A possible
result, simplified as indicated, is shown in Fig. 2.

Unfortunately, however, though often being helpful, in this example the
attribute-disjointness does not guarantee the confidentiality requirements. In
fact, while the fragment instances to F1 and F2 contain 4 subtuple instances
each, there are 3 occurrences of the value “Waren” under the attribute Doc-
tor for F2 but only 2 occurrences of a value different from “McKinley” under
the attribute Name for F1. Hence, any matching of the fragment instances
must combine at least one of the occurrences of “Waren” with an occurrence of
“McKinley”. Thus, exploiting the visible frequencies of occurrences in the frag-
mentation, the occurrence of the value combination (McKinley, Waren) under the
attribute combination {Name,Doctor} in the hidden original relation instance

80 J. Biskup and M. Preuß

is inferrable, violating the confidentiality requirements. In general, besides fre-
quencies we would also have to consider the impact of data dependencies.

After briefly introducing basic definitions in Sect. 2, we will present and dis-
cuss fundamental risks of harmful inferences by exploiting first only observable
frequencies (Sect. 3) and subsequently additionally background knowledge in the
form of data dependencies, in turn inspecting functional dependencies and more
general numerical dependencies (Sect. 4) and finally tuple-generating dependen-
cies with a multivalued dependency as a special case (Sect. 5). In the concluding
Sect. 6, we point to related work, summarize our achievements, outline future
research on blocking inferences of the kind treated, and highlight the connec-
tion of our study with the broader topics of inversion of database queries and
reasoning under uncertainty.

2 Basic Definitions

Abstracting from any application, ignoring encryption related parts and the
owner’s need for reconstruction, and assuming the covering of all attributes, our
investigations will treat fragmentations of the kind defined below using standard
terminology [1], together with their impact on the protection of associations.

Definition 1 (Full attribute-disjoint and duplicate-preserving frag-
mentation). Let (R(X),SC) be a relational schema with attribute set X and
data dependencies SC, and X = 〈X1, . . . , Xm〉 be a sequence of attribute sets
partitioning X, i.e., the sets Xi are nonempty and mutually disjoint subsets of
X such that X =

⋃
i=1,...,m Xi. Then F = 〈F1(X1), . . . , Fm(Xm)〉 is the frag-

mentation schema derived from R(X) and X .
Furthermore, let r be a relation instance of (R(X),SC), i.e., a finite set of

tuples (without duplicates) over the attributes in X satisfying all data dependen-
cies in SC, containing n different tuples. Then, seen as an operator, the fragmen-
tation schema F generates the fragmentation instance F(r) = 〈f1, . . . , fm〉 by
taking the projections of r on Xi, respectively, without removing duplicates and
then probabilistically scrambling the order of them regarding storage or display,
fi = π̄?

Xi
(r), such that each fragment instance fi has n subtuple instances1.

We emphasize that the setting of Definition 1 requires

– the absence of duplicates in original relation instances r (meant to be actually
stored under the relational schema (R(X),SC) on the one hand, and

– the suppression of duplicate removal when generating the fragmentation
instances by taking projections according to the fragmentation schema on
the other hand.

1 Where appropriate and convenient, we distinguish between a tuple and a tuple
instance: we call an assignment of values to some attributes a tuple, whereas we
refer to an occurrence of a tuple as a tuple instance having in mind that a relation
instance allowing duplicates might contain multiple instances of the same tuple.

Inferences from Attribute-Disjoint and Duplicate-Preserving 81

While the duplicate preservation under fragmentation is essential for the tech-
niques proposed by Ciriani et al. [14], in an alternative approach, technically, we
could allow duplicates already in original relation instances. However, most prac-
tical applications and both constraint-enforcement and query-answering based
on first-order logic usually assume set semantics rather than multiset semantics
for original relation instances and, accordingly, so do we.

Definition 2 (Syntactically protected association). Let F =〈F1(X1), . . . ,
Fm(Xm)〉 be the fragmentation schema derived from a relational schema
(R(X),SC) and a sequence X of attribute sets partitioning X. Then an attribute
set C is an association syntactically protected by F iff C is a non-singleton
subset of X but not contained in any of the attribute sets Xi.

Unfortunately, as already mentioned before, the syntactic splitting condition
of Definition 2 might fail to ensure strong versions of confidentiality. In partic-
ular, an actually occurring value combination of an only syntactically protected
association might be inferrable by means of considering so-called matchings.

Definition 3 (Matching-inferrable value combination). Let F =〈F1(X1),
. . . , Fm(Xm)〉 be the fragmentation schema derived from a relational schema
(R(X),SC) and a sequence X of attribute sets partitioning X. Let F(r) = f =
〈f1, . . . , fm〉 be the fragmentation instance generated from the relation instance
r of (R(X),SC). Furthermore, let attribute set C be an association syntactically
protected by F . A subtuple μ over C is called a matching-inferrable value com-
bination iff it is generated by each SC-admissible matching M of the subtuples
in f .

Here, a matching is formed by iteratively taking one subtuple instance from
each fragment instance fi and combining them until the fragment instances (all
having the same number n of subtuple instances) are (simultaneously) exhausted.
In this way, a matching M generates a collection M(r) of n tuple instances –
possibly containing duplicates – over the attributes of X. Moreover, a matching
M is called SC-admissible if M(r) is an instance of (R(X),SC), i.e., a set (con-
taining no duplicates) satisfying all data dependencies in SC.

Remark 1. From an attacking observer’s point of view, a matching M can be
seen as one possibility to undo the unknown scrambling of subtuple instances
when the fragment instances have been generated. Some possibilities, however,
might produce duplicates or result in a violation of data dependencies, and thus
have to be discarded. Accordingly, if an attacker can find out that a subtuple μ
over an attribute set C is generated by all remaining SC-admissible possibilities,
he can conclude that this subtuple can be obtained by undoing the actually
employed scrambling and, thus, occurs in the hidden relation instance. Hence,
for a deliberately syntactically protected association C, such a subtuple would
be matching-inferrable: a successful inference from an attacker’s point of view,
but a security violation from the owner’s point of view.

82 J. Biskup and M. Preuß

Remark 2. More formally, if C is a deliberately syntactically protected associa-
tion, then an attacking receiver is suspected to be interested in the certain part
(formalized by intersection) of the projections on C of the relation instances r′ of
the schema (R(X),SC) contained in the inversion of the observed fragmentation
instance f = F(r) under the fragmentation schema F , i.e., to determine

F -1,C
SC (f) =

⋂
{πC(r′) | r′ is relation instance of (R(X),SC) and F(r′) = f}.

For the attacker, a conceptual solution is given by the matching procedure
sketched above, due to the straightforward equation

F -1,C
SC (f) =

⋂
{πC(M(r)) |M(r) is formed from F(r) = f and SC-admissible}.

In contrast, the data owner would aim at assuring that the visible fragmentation
f does not allow any possibilistic inference, i.e., that F -1,C

SC (f) = ∅.

Remark 3. The data owner’s goal to ensure F -1,C
SC (f) = ∅ is also equivalent

to the notion of inference-proofness as employed by the concept of Controlled
Interaction Execution [6], under a confidentiality policy suitably expressing the
need to hide value combinations over C, as elaborated in [10,11]. Though without
referring to particular formal logic, and similarly as in an abstract version of
Controlled Interaction Execution [7], the goal roughly says that a suitable logic-
based formalization of the setting does not entail any sentence that logically
expresses the subtuple μ over C.

3 Frequency-Based Inferences Without Dependencies

To start with, we briefly remind a classical result of the theory of relational
databases, see [1], that vertically decomposing a relation instance r – without
duplicates – into covering projections πXi

(r) for i = 1, . . . ,m – while remov-
ing duplicates – might be lossy, i.e., the (natural) join ��j=1...m πXi

(r) of the
projections might be a strict superset of the original relation instance r. In this
case, in general an observer of the projections cannot decide whether a specific
tuple generated by the join is spurious, i.e., not contained in the original relation
instance. However, if the observer knows the original cardinality, he can easily
decide whether or not the join has produced spurious tuples, just by compar-
ing ||r|| with || ��j=1...m πXi

(r) ||. Further we remind that for pairwise disjoint
attribute sets Xi the join �� degenerates to the Cartesian product ×.

Lemma 1 (Matching-inferrable binary value combination). Let n be
the number of (sub)tuple occurrences in a relation instance r and the frag-
ment instances fi and fj, i �= j, of a relational schema (R(X),SC) with
SC = ∅ (i.e., without data dependencies) and the fragmentation schema F =
〈F1(X1), . . . , Fm(Xm)〉, respectively. Furthermore, let C ⊆ Xi ∪Xj be an associ-
ation syntactically protected by F . Consider any value combination μ = (μi, μj)
over C such that μl occurs in exactly cμl

many subtuple instances of fl, for
l ∈ {i, j}. Then, the following assertions hold:

Inferences from Attribute-Disjoint and Duplicate-Preserving 83

1. If cμi
+ cμj

> n , then μ is matching-inferrable and has at least cμi
+ cμj

− n
occurrences in any matching M .

2. If cμi
+ cμj

≤ n and r is unique on X \ (Xi ∪Xj), i.e., the projection of r on
X \(Xi∪Xj) would not produce duplicates, then μ is not matching-inferrable.

Proof. 1. Assume cμi
+cμj

> n , and consider any matching M . For the cμi
many

subtuple instances of fi containing μi there are at most n − cμj
many subtuple

instances in fj that do not contain μj . Hence cμi
− (n− cμj

) = cμi
+ cμj

−n ≥ 1
many of the former subtuple instances must be matched with a subtuple instance
of fj containing μj .
2. We have to show that there exists an SC-admissible matching M such that
M(r) is a set (without duplicates) not containing μ. If r itself does not contain
μ, then the matching that exactly undoes the fragmentation has the desired
properties. Otherwise, we can remove all occurrences of μ = (μi, μj) without
affecting the fragmentation result: for each tuple with such an occurrence we
exchange either the Xi- or the Xj-component with the respective component of
a tuple that contains neither μi nor μj . Such a tuple exists by the first assumption
that cμi

+ cμj
≤ n . Let then M be a matching such that M(r) generates the

result of all exchanges. By the uniqueness of r on X \ (Xi ∪Xj) according to the
second assumption, M(r) has no duplicates. ��
Remark 4 (Impact of duplicate-free relation instances). Unfortunately, in
Lemma 1 the condition cμi

+ cμj
> n is not necessary for μ being matching-

inferrable, as witnessed by the following counterexample. Let X = {Ai, Aj} and
r = { (a, μj), (μi, μj), (a, b) } be a relation instance having n = 3 tuples with
a �= μi and b �= μj and, thus cμi

+ cμj
= 1 + 2 = 3 = n. Consider any matching

M of the fragments fi = {{ (a), (μi), (a) }} and fj = {{ (μj), (μj), (b) }} such that
M(r) does not contain μ = (μi, μj). Then M combines μi with b and, thus, both
occurrences of μj with a, yielding duplicates. Hence, μ is matching-inferrable. In
contrast, the proof of Lemma 1, assertion 2 shows that the condition cμi

+cμj
> n

would be necessary if we allowed duplicates in original relation instances.

Theorem 1 (Existence of a matching-inferrable value combination).
Let n be the number of (sub)tuple instances in a relation instance r and the
fragment instances f = 〈f1, . . . , fm〉 of a relational schema (R(X),SC) with
SC = ∅ (i.e., without data dependencies) and the fragmentation schema F =
〈F1(X1), . . . , Fm(Xm)〉, respectively. Furthermore, let C ⊆ Xi1 ∪ · · · ∪ Xik , with
P := { i |C∩Xi �= ∅ } = {i1, . . . , ik} ⊆ {1, . . . , m}, be an association syntactically
protected by F , and maxcil the maximal number of occurrences of a subtuple over
the attributes of C ∩ Xil in fil , for l = i1, . . . , ik.
If 2 maxci1 + · · · + maxcik > (k − 1) · n , then there exists a matching-inferrable
value combination μ = (μi1 , . . . , μik) over C ∩ Xi1 ∪ · · · ∪ C ∩ Xik .

Proof. For k = 2, the theorem is an immediate consequence of the first assertion
of Lemma 1. The general case can be proved by induction on k, exploiting the
induction hypothesis and again the first assertion of Lemma 1. ��
2 As discussed above, if we allowed duplicates in original relation instances, the con-

dition would also be necessary.

84 J. Biskup and M. Preuß

4 Inferences with Numerical Dependencies

Even if we allowed duplicates in original relation instances, in general the con-
dition presented in Theorem 1 would not be necessary for a relational schema
(R(X),SC) with nontrivial data dependencies in SC such that certain sets of
tuple instances over X are not accepted as a relation instance of the schema.
In fact, a data dependency might relate the parts of an occurrence of a value
combination split among different fragments. Moreover, to exploit such a rela-
tionship for an inference attack sometimes the knowledge of the frequencies of
potentially combined parts is crucial.

In this section, we restrict our investigations to cardinality constraints in the
form of numerical dependencies which include functional dependencies as a spe-
cial case. We will consider the class of tuple-generating dependencies in the next
section. In this study, however, we neither intend to cover the full range of data
dependencies considered so far nor to relate the chosen examples exactly to the
various versions suggested in the literature. Rather, by means of examples seen
to be intuitively representative, we aim to demonstrate the issues of unwanted
and sometimes even unexpected inferences enabled by the knowledge of data
dependencies. Regarding the comprehensive class of data dependencies we refer
the reader to, e.g., the extensive surveys of the rich literature contained in the
textbooks [1,27] and a few original contributions [3–5,8,16,21,22,25,26] selected
out of many more works.

Example 2 (Functional dependency and frequencies). Consider the relation
instance of the schema Patient and the fragmentation shown in Figs. 1
and 2, respectively. The relation instance satisfies the functional dependency
Medication → Illness. So, we now assume that this semantic constraint has
publicly been declared for the schema such that the attacking receiver holds
only those relation instances possible that satisfy this functional dependency.
The value “MedB” under attribute Medication occurs twice in the fragment
instance f3, and thus also in the hidden relation instance. By the semantic con-
straint, in the hidden relation instance, both occurrences must appear in com-
bination with the same value under attribute Illness, which then must occur
at least twice. Since duplicates are preserved, this value must also occur at
least twice in the fragment instance f2. Only the value “Laceration” meets this
requirement. Thus, seeing the fragment instances and knowing the functional
dependency enables to infer that the value combination (Laceration, MedB) over
the attribute set {Illness,Medication} occurs in the hidden relation instance,
though, in the sense of Definition 2, this attribute set is an association syntac-
tically protected by the fragmentation and the condition of Lemma 1, assertion
1 is not satisfied.

The preceding example is captured by the following proposition. For the sake of
simplicity, it is expressed in terms of a functional dependency relating two single
attributes A and B of some schema with attribute set X. Evidently, for the
general case of a functional dependency relating two sets of attributes Y ⊆ X
and Z ⊆ X, a suitably adapted proposition holds as well.

Inferences from Attribute-Disjoint and Duplicate-Preserving 85

Proposition 1 (Inferences by equations on frequencies). For A,B ∈ X,
let (R(X), {A → B}) be a relational schema with the functional dependency
A → B as a single semantic constraint and r a relation instance containing n
different tuples. Furthermore, for each value a occurring in r under attribute A
let ca be the number of its occurrences and, similarly, for each value b occurring
in r under attribute B let cb be the number of its occurrences. Then, for all
values b occurring in r under attribute B the following equation holds:

∑

a∈πA(σB=b(R))

ca = cb. (1)

Proof. Consider any value b occurring in r under attribute B. Then πA(σB=b(R))
is the set of all values a – without duplicates – such that (a, b) occurs in the
relation instance r of R. Each such value a occurs ca many times, and by the
functional dependency A → B each occurrence is together with b. ��

If an attacker knows both the fragment fA showing the column A of r and the
fragment fB showing the column B of r, he can exploit the preceding proposition
in a straightforward way as follows. Seeing both fragments, the attacker also
knows all frequencies ca and cb. He can then simply attempt to solve the set of
equations derived from instantiating the Eq. (1) – with the relation symbol R
treated as the unknown item – to infer all possibilities for the hidden relation
instance r. If there is a unique solution, the attacker has completely inferred
the duplicate-preserving {A,B}-part of the hidden relation instance r from its
published fragments fA and fB . Even otherwise, all solutions might still coincide
for a particular value b whose combinations in the hidden relation instance r are
then revealed.

We can consider the attacker’s task as to solve the following variant of a
packing problem. We interpret each value b occurring under attribute B in fB

as a container having capacity cb, and each value a occurring under attribute A
in fA as a packet of size ca. Then the attacker has to find all pairs (a, b) that
appear in each possible allocation of the packets to the containers such that all
containers are completely filled, under the preconditions that (1) the sum over
the packet sizes equals the sum over the container capacities and (2) there exists
a solution, namely the one induced by the original relation instance.

Our variant is closely related to the NP-complete problem [SR1] BIN PACK-
ING described in [20], where k bins (containers) each of the same capacity B
should be filled with a finite set of items (packets) of given sizes. In our variant
the bins may have different capacities, the existence of a solution completely
filling all bins is known beforehand by the precondition, and we are interested
in the allocations common to all solutions. Moreover, another related problem
from the field of protection of statistical databases, [SR35] CONSISTENCY OF
DATABASE FREQUENCY TABLES, is listed in [20] as being NP-complete. For
this problem, a frequency refers to the number of occurrences of a pair of values
under any two different attributes; furthermore, knowledge about value combi-
nations is also not restricted to the content of a fragment. The problem then is

86 J. Biskup and M. Preuß

FA A

a1

a1

a2

a3

FB B

b1
b1
b2
b3

FA A

a1

a1

a1

a1

a2

a2

a2

a3

FB B

b1
b1
b1
b1
b2
b2
b2
b2

FA A

a1

a1

a1

a1

a1

a2

a2

a2

a3

FB B

b1
b1
b1
b1
b1
b2
b2
b2
b2

Fig. 3. Three fragmentations (f i
A, f

i
B) of different relation instances of a schema with

functional dependency A → B

to decide whether there exist unknown values supplementing the already known
ones such that the given frequencies are satisfied. Due to these relationships, we
expect that the attacker’s task will be of high computational complexity. This
expectation is also supported by the formal complexity analysis given in [7] and
other works in the field of confidentiality-preserving data publishing, elaborated
from the point of view of the defender.

Example 3 (Functional dependency and frequencies for packing problem). Given
the functional dependency A → B, consider the three fragmentation instances
(f i

A, f i
B) over the same fragmentation schema 〈FA({A}, FB({B}〉 shown in Fig. 3.

Basically, (f1
A, f1

B) is an abstract version of Example 2: since “packet” a1 can only
be allocated to “container” b1, the value combination (a1, b1) must occur twice
in the original hidden relation instance underlying this fragmentation; nothing
more definite can be inferred about the combinations of a2 and a3 with b2 and
b3, respectively. For (f2

A, f2
B), “packet” a1 can be allocated to either “container”

b1 or “container” b2, and then “packets” a2 and a3 both must be allocated to the
container not selected for “packet” a1. Thus, no (definite) inferences are possible
at all. For (f3

A, f3
B), Lemma 1 already asserts that the value combination (a1, b1)

is matching-inferrable and hence occurs at least once in the hidden instance
underlying this fragmentation, since ca1 + cb1 = 5+5 > 9; under the presence of
the functional dependency, now Proposition 1 implies more, namely that there
must be exactly 5 occurrences. In turn, the latter fact together with the observ-
able frequencies imply that (a2, b2) occurs 3 times in the hidden instance, and
(a3, b2) once. Hence, in this case, the duplicate-preserving {A,B}-part of the hid-
den instance can be completely reconstructed from the observable fragmentation
instances.

Though even more complex, we can extend our considerations to numerical
dependencies of the form Y →min

max Z, where Y and Z are sets of attributes
and 1 ≤ min ≤ max are integers. Such a numerical dependency requires that
each subtuple μ over the attributes of Y occurs combined with at least min
and at most max different subtuples ν over the attributes of Z. A functional
dependency Y → Z can be seen as a numerical dependency Y →1

1 Z.

Inferences from Attribute-Disjoint and Duplicate-Preserving 87

R A B

a1 b1
a1 b2
a2 b1
a2 b2
a3 b1
a3 b2

FA A

a1

a1

a2

a2

a3

a3

FB B

b1
b1
b1
b2
b2
b2

Fig. 4. A relation instance of a schema with numerical dependency A →2
2 B and

(unscrambled) derived fragmentation instances that uniquely determine the set of
tuples occurring in the relation instance

Example 4 (Numerical dependency and frequencies). Figure 4 illustrates a spe-
cial case of an inference for a numerical dependency A →min

max B with k := min =
max and a relation instance with l ·k tuple occurrences for some number l, hav-
ing l many different values under attribute A and k many different values under
attribute B. By the dependency, each of the l values under A must occur in
the hidden relation instance combined with each value under B, and thus the
relation instance must be the Cartesian product of the value sets involved.

Proposition 2 (Inferences by equations on frequencies). For A,B ∈ X,
let (R(X), {A →min

max B}) be a relational schema with the numerical dependency
A →min

max B as a single semantic constraint and r a relation instance containing n
tuples. For each value a occurring in r under attribute A, let ca be its frequency,
i.e., the number of its occurrences under A, and da := ||πB(σA=a(R)) || its
diversity, i.e., the number of different values under attribute B occurring together
with a, and then for each b ∈ πB(σA=a(R)), cb

a the frequency of (a, b), i.e., the
number of its occurrences in r. Moreover, for each value b occurring in r under
attribute B let cb be the number of its occurrences under B.

Then, for all values a occurring in r under attribute A and for all values b
occurring in r under attribute B the following equations holds:

cb =
∑

a∈πA(σB=b(R))

cb
a, (2)

ca =
∑

b∈πB(σA=a(R))

cb
a, (3)

min ≤ da ≤ max. (4)

Proof. Equation (2) can similarly be justified as Eq. (1). Equations (3) and (4)
are immediate consequences of the definitions of the items involved. ��
Remark 5. Similarly as discussed for functional dependencies, the attacker’s task
can be considered as solving the set of equations derived from instantiating the
Eqs. (2), (3) and (4) – with the relation symbol R and the values da and cb

a

derived from R treated as the unknown items. Again, in general the equations

88 J. Biskup and M. Preuß

will not have a unique solution and, thus, regarding a syntactically protected
association C, conceptually only the intersection of the projections on C will
deliver a certain inference. Surely, the data owner is interested in blocking such
an inference, i.e., in ensuring that the intersection in empty. Evidently, the latter
task is computationally highly complex, and so far neither a practical procedure
to solve the equations involved nor an efficient and effective method to block
their solvability is known to us. Presumably, the best we can hope to achieve
is an approximative blocking method, favoring efficiency at the costs of loss of
availability or violation of strict confidentiality.

5 Inferences with Tuple-Generating Dependencies

We are now addressing the impact of another well-known class of data dependen-
cies, namely tuple-generating dependencies which, basically, require that when-
ever one or more tuples each of a specific form occur together in a relation
instance, possibly related by identical components, another tuple partially con-
structed from selected components of those tuples and some constant symbols
has to be present as well. Schema design theory has identified such depen-
dencies as a possible source of redundancy in relation instances and, thus, of
options to infer nontrivial information already from parts of an instance. Fur-
thermore, each functional dependency entails a corresponding tuple-generating
dependency, and thus studying the latter kind another aspect of the former
one will be treated, together with the consequences of extensional background
knowledge as expressed by means of constant symbols.

Definition 4 (Tuple-generating dependencies). For a relational schema
(R(X),SC) with attribute set X = {A1, . . . , An} and data dependencies SC, an
element of SC is called a tuple-generating dependency if it has a representa-
tion as an (untyped) sentence (without free variables) of first-order logic (with
constant symbols) of the syntactic (implicational) form

(∀x)(∃y)[[
∧

j=1,...,p

αj] =⇒ β] such that

1. for j = 1, . . . , p, the premises αj are relational atoms of the form R(tj,1, . . . ,
tj,n) where each term tj,i is either a universally quantified variable contained
in x or a constant symbol;

2. the conclusion β is a relational atom of the form R(tp+1,1, . . . , tp+1,n) where
each term tp+1,i is either a universally quantified variable contained in at
least one premise (and thus also in x) or an existentially quantified variable
contained in y or a constant symbol;

3. the prefix (∀x)(∃y) comprises exactly the variables occurring in some premise
or in the conclusion.

We start our investigations about the impact of a single tuple-generating
dependency by considering two examples.

Inferences from Attribute-Disjoint and Duplicate-Preserving 89

Example 5 (Tuple-generating dependency without frequencies). Consider the
fragmentation schema with attribute sets X1 = {A1, A3} and X2 = {A2, A4}
to split the syntactically protected association C = {A3, A4} for the relational
schema with the attributes A1, A2, A3 and A4 and the dependency Φ defined by

(∀x1, x2, x3, x4, x̄1, x̄2, x̄3, x̄4)
[[R(x1, x̄2, x3, x̄4) ∧ R(x̄1, x2, x̄3, x4)] =⇒ (∃y1, y2)R(y1, y2, x3, x4)].

Having the fragmentation schema in mind, this dependency can be given the
following intuitive interpretation: if simultaneously a value combination (x1, x3)
is visible in the fragment for X1 and a value combination (x2, x4) is visible in the
fragment for X2, then the value combination (x3, x4) occurs in the split associa-
tion C, the intended protection of which would thus be violated. In contrast, lack-
ing the background knowledge that the original relation satisfies Φ, in general an
observer could not distinguish whether the value x3 seen in one fragment and the
value x4 seen in the other fragment actually occur together in a single tuple under
the attributes in C or not. In fact, the relation {(a1, ā2, a3, ā4), (ā1, a2, ā3, a4)}
would generate the fragments {(a1, a3,), (ā1, ā3)} and {(ā2, ā4), (a2, a4)}, leav-
ing open which of the two possible matchings is the original one, in particular
whether the value combinations (a3, a4) and (ā3, ā4) or the value combinations
(a3, ā4) and (ā3, a4) actually occur under the attributes in C.

We also note that the inspected tuple-generating dependency Φ can actually
be considered as an embedded multivalued dependency for the projection on the
attribute set {A3, A4}, shortly denoted by ∅ � A3|A4, requiring that this pro-
jection is the Cartesian product of the projection on {A3} with the projection
on {A4}, and obviously violated by the relation defined above.

Proposition 3 below will treat the kind of situation described in Example 5 more
generally. The proposition will present three syntactic conditions regarding the
occurrences of terms in a tuple-generating dependency to perform successful
inferences about a split association C solely on observing data in the fragments.
These conditions are outlined as follows. On the one hand and straightforwardly,
(a) each non-constant term in the C-part of the conclusion has to be determined
in at least one premise. On the other hand and somehow more sophistically, the
constraints on relevant terms as expressed in the premises have to be restricted
(b) regarding occurrences of one or more terms within a single premise and (c)
regarding the occurrences of one term across two or more premises.

In terms of first-order logic, the latter two conditions would allow us to
rewrite the tuple-generating dependency using a slightly more general syntactic
form where each original premise has been transformed into a derived formula
that gets a prefix of existentially quantified variables. Such a purely existential
prefix then serves to express an effect that is equivalent to consider only the
projection on the attributes of only one of the fragments. For the dependency Φ
considered above, the following rewriting would be suitable:

90 J. Biskup and M. Preuß

(∀x1, x2, x3, x4)
[[(∃x̄2, x̄4)R(x1, x̄2, x3, x̄4) ∧ (∃x̄1, x̄3)R(x̄1, x2, x̄3, x4)]

=⇒ (∃y1, y2)R(y1, y2, x3, x4)].

To formally express and verify the intuition just outlined, we first need to pre-
cisely define the notions of an attribute being either essential or isolated.

Definition 5. Let αj be a premise of a tuple-generating dependency Φ over the
attribute set X = {A1, . . . , An}. Then the set Ej of essential attributes (for αj)
is defined as the smallest subset of X with the following properties:

1. If tj,i is a constant symbol in αj, then Ai ∈ Ej.
2. If tj,i1 is a universally quantified variable multiply occurring in αj such that

tj,i1 = tj,i2 with i1 �= i2, then both Ai1 ∈ Ej and Ai2 ∈ Ej.
3. If tj,i is a universally quantified variable in αj that also occurs in the C-part

of the conclusion β of Φ, then Ai ∈ Ej.

All remaining attributes are called isolated in αj, i.e., we define Ij = X \ Ej.

For the simple dependency Φ considered in Example 5 above, only the third
rule applies and thus we get E1 = {A3} and E2 = {A4}.

Proposition 3 (Inferences by a single tuple-generating dependency
only). Let F = 〈F1(X1), . . . , Fm(Xm)〉 be the fragmentation schema derived
from a relational schema (R(X),SC) with attribute set X = {A1, . . . , An} and
a sequence X of attribute sets partitioning X such that SC = {Φ} contains the
tuple-generating dependency Φ = (∀x)(∃y)[[

∧
j=1,...,p αj] =⇒ β] as a single

semantic constraint. Furthermore, let attribute set C be an association syntac-
tically protected by F , and consider the following assertions:

1. (a) In the conclusion β = R(tp+1,1, . . . , tp+1,n), for each attribute Ai ∈ C the
term tp+1,i is a constant symbol or a universally quantified variable.

(b) For each premise αj the set Ej of its essential attributes is fully contained
in exactly one attribute set Xe(j) of the partition X .

(c) If a universally quantified variable x occurs in two or more premises
αj1 , αj2 , . . . , then all occurrences are within the pertinent sets of essential
attributes Ej1 , Ej2 ,

2. For all relation instances r of (R(X),SC) satisfying the premises σ[α1], . . . ,
σ[αp] of Φ for some substitution σ of the variables in x the generated frag-
mentation instance f is not inference-proof regarding C, i.e., F -1,C

SC (f) �= ∅.
Then assertion 1 implies assertion 2.

Proof. Assuming assertion 1, suppose the relation instance r satisfies both the
sentence Φ, which has only universally quantified variables in the premises, and
the substituted premises σ[α1], . . . , σ[αp] of Φ for a suitable substitution σ of the
variables in x . Then there exists a substitution τ of the variables in y such that
r also satisfies the substituted conclusion τ [σ[β]] = τ [σ[R(tp+1,1, . . . , tp+1,n)]].

Inferences from Attribute-Disjoint and Duplicate-Preserving 91

Thus the subtuple μ over C formed from this conclusion occurs in r. According
to the assumed assertion 1.(a), the substitution τ for the existentially quantified
variables is not relevant for μ and thus we actually have μ = (σ[tp+1,i])Ai∈C . In
the remainder of the proof we will verify that for the fragmentation F(r) = f =
〈f1, . . . , fm〉 we have μ ∈ F -1,C

SC (f) and thus F -1,C
SC (f) �= ∅.

Let r̃ be any relation instance of the relational schema (R(X), {Φ}) generat-
ing the same fragmentation, i.e., F(r̃) = f .

For j = 1, . . . , p define μj to be the Xe(j)-part of σ[αj], where e(j) is
determined by assumption 1.(b) assuring that μj assigns values to all essential
attributes of the premise αj . In particular, we have μj ∈ fe(j).

Furthermore, for any isolated attribute Ai of αj consider the term tj,i.
According to property 1 of Definition 5, tj,i is not a constant symbol and, thus,
it is a universally quantified variable. Moreover, this variable has no further
occurrences within that premise or any other premise or the C-part of the con-
clusion, according to property 2 of Definition 5, the assumed assertion 1.(c) and
property 3 of Definition 5, respectively.

Let x iso comprise all those universally quantified variables under isolated
attributes, and x ess the remaining ones occurring in the essential parts of the
premises. Denoting the restriction of the substitution σ to x ess by σess and
observing that μj ∈ fe(j) = π̄?

Xe(j)
(r̃) (here π̄? signifies a projection in the sense

of Definition 1), we conclude that there exists a substitution σiso of the variables
x iso such that σiso[σess[αj]] ∈ r̃. By the construction, these tuples comply with
the premises of the dependency Φ. Applying Φ then implies that for some sub-
stitution τ of the existentially quantified variables in y also τ [σiso[σess[β]]] ∈ r̃.
By property 3 of Definition 5 and assumed assertion 1.(a) the C-part of the tuple
τ [σiso[σess[β]]] only depends on σess and thus equals μ. Hence μ ∈ πC(r̃). ��

Proposition 3 describes situations that enable an attacking observer to violate
inference-proofness just be logical entailment without additionally exploiting
frequencies. The next example tells us that even in situations not captured by
Proposition 3 the observation of frequencies might turn out to be harmful.

Example 6 (Tuple-generating dependency and frequencies). We reconsider
Example 5 above but now assume a more frequently encountered kind of a tuple-
generating dependency, namely the multivalued dependency shortly denoted by
A1, A2 � A3|A4, having the following formalization in first-order logic:

(∀x1, x2, x3, x4, x̄3, x̄4)
[[R(x1, x2, x3, x4) ∧ R(x1, x2, x̄3, x̄4)] =⇒ R(x1, x2, x3, x̄4)].

Intuitively, this dependency requires that whenever the value combination
(x1, x2) under the attributes A1 and A2 occurs both with the value combina-
tions (x3, x4) and (x̄3, x̄4) under the attributes A3 and A4, then the former value
combination also occurs together with (x3, x̄4). More generally, this requirement
then implies that (x1, x2) even occurs together with each element in the Carte-
sian product of the jointly occurring values under A3 and the jointly occurring

92 J. Biskup and M. Preuß

R A1 A2 A3 A4

a1 a2 a3 a4

ā1 ā2 ā3 ā4

ā1 ā2 ā3 ȧ4

ā1 ā2 ȧ3 ā4

ā1 ā2 ȧ3 ȧ4

FA1,A3 A1 A3

a1 a3

ā1 ā3

ā1 ā3

ā1 ȧ3

ā1 ȧ3

FA2,A4 A2 A4

a2 a4

ā2 ā4

ā2 ȧ4

ā2 ā4

ā2 ȧ4

Fig. 5. A relation instance of a schema with multivalued dependency A1, A2 � A3|A4

and derived fragmentation instances for attribute sets X1 = {A1, A3} and X2 =
{A2, A4} that uniquely determine the set of tuples occurring in the relation instance

values under A4. Consequently, for each value combination (x1, x2) the number
of jointly occurring value combinations (x3, x4) is the cardinality of a Cartesian
product. More precisely, this number is the arithmetic product of the cardinal-
ity of the jointly occurring x3-values and the cardinality of the jointly occurring
x4-values. This consequence might enable combinatorial reasoning under the
additional provision that the effect of duplicates is appropriately considered,
i.e., that in general an observer can directly determine frequencies rather than
only cardinalities.

Most notably, such a reasoning might be successful (from the point of view of
an attacker) even for the present situation where both the attribute set {A1, A2}
of the dependency’s left-hand side and the attribute set {A3, A4} of the depen-
dency’s right hand side – which is the syntactically protected association C –
are split by the fragmentation schema.

In fact, Fig. 5 shows such a success as follows. The single occurrence of (a1, a3)
has to match the single occurrence of (a2, a4), since otherwise, to complete the
matching, for each fragment there would be only three candidates left to come
up with a result of the form (ā1, ā2, . , .) but the multivalued dependency would
require that there are four, a contradiction. Furthermore, each matching of the
remaining subtuple instances in the two fragments produces the same four tuples.
Thus the original relation instance can be fully reconstructed based on the frag-
ment instances.

6 Related Work and Conclusions

Inference analysis and control for information published about database relations
have been an important topic in research on confidentiality enforcement since
quite a long time, presumably starting with seminal work on information leakage
via statistical databases, as, e.g., summarized by Denning [17] as early as 1982,
and later continued under a much broader perspective, as more recently sur-
veyed by, e.g., Fung et al. [18]. The particular proposal of fragmenting relational
data for ensuring confidentiality has arisen in different forms with the trend of
outsourcing data for cloud computing since around ten years. First proposals by
Ciriani et al. [12,13] only used fragmentation, but subsequent work of Aggarwal

Inferences from Attribute-Disjoint and Duplicate-Preserving 93

et al. [2], Ciriani et al. [14], Ganapathy et al. [19] and Xu et al. [28] additionally
employed encryption.

Initial deeper analysis by Biskup et al. [10,11] of the actual achievements of
fragmentation in the presence of data dependencies – as usually employed for
relational databases in practice – pointed to the weakness of the simple syntactic
splitting approach. This analysis also led to more semantically oriented refine-
ments, guaranteeing inference-proofness in a strong sense for special classes of
data dependencies, but unfortunately in general also increasing the computa-
tional complexity of finding appropriate fragmentation schemas. For the specific
setting of [14] also underlying our contribution, Ciriani et al. [15] later also pro-
vided a refinement and its analysis, considering a non-standard and still weak
syntactic notion of functional dependence as an attacking receiver’s background
knowledge. Their refinement exemplifies a compromise between the conflicting
goals involved, effective preservation of confidentiality on the one hand and effi-
cient computation of fragmentations on the other hand.

Our contribution presents an exploratory study regarding the former goal
when using the setting of [14]. While the authors of [15] only deal with a weak
notion of functional dependence between attributes on the schema level, we study
the impact of classical, more expressive functional dependencies on the instance
level, and we extend these investigations to further important classes of data
dependencies. Moreover, considering the instance level, we identify the crucial
role of preserving duplicates when fragmenting a relation instance: this feature
opens the way for combinatorial reasoning to infer hidden information, as far as
we are aware for this context neglected in previous work. Once opened, for the
first time this way enables us to investigate possible interferences of combina-
torial reasoning about observable frequencies on the one hand and entailment
reasoning about data dependencies known from the database schema and actual
data values observed in the fragments on the other hand.

Briefly summarized, these investigations provide initial, hopefully represen-
tative insight into conditions that enable or block inferences of information that
is intended to be hidden by completely splitting the underlying data, respec-
tively. Though already aiming at covering most of the relevant cases, future
work still has to complement the overall picture, ideally in order to come up
with a complete characterization of inference options in terms of a condition
that is both necessary and sufficient. Based on such a characterization, we
could then design a refined fragmentation approach that guarantees inference-
proofness just by ensuring that the result does not satisfy that condition. This
long-term research project could be elaborated both for single relation instances
and, even more ambitiously, for database schemas dealing with all their respec-
tive relation instances. We have already explored a first step in such a direction
in our study [10], which however deals with a kind of fragmentation that let
each observer only see one fragment. In contrast, one peculiarity of our setting
as adopted from [14] is that one observer sees all fragments and, thus, might
exploit multiple views on the same underlying original data. This situation is
well-known to often constitute a threat to confidentiality, as, e.g., treated in [18]
for different settings.

94 J. Biskup and M. Preuß

From the point of view of database theory, our contribution deals with a
specific case of the much more general problem of computing the inversion of
database queries or, equivalently, solving equations in the relational algebra, as
studied in [9]. However, we are now deviating from the pure relational model,
which treats relations as pure sets allowing no duplicates and incorporating
no sequence of their members. Though we assume that the original relation is
duplicate-free, we explicitly study the impact of maintaining duplicates in the
fragments. Moreover, the inversion of a fragmentation by means of exploring
matchings in our sense aims at undoing the deliberate scrambling of data repre-
sentations. These features also make our settings slightly different from those for
the classical studies of lossless joins, see, e.g., [1]. While joins more generally deal
with overlapping projections, we require attribute-disjointness of the fragments
which reduces the join to the Cartesian product and in most practical cases vio-
lates losslessness. Nevertheless, for this special case our results provide insight
about the detailed information content of a lossy operation, see. e.g., [23].

Furthermore, in general inversion generates uncertainty about which element
of the pre-image has been the actual one and, thus, the challenge arise how to
determine the certain part of the pre-image contained in all its elements, also
known as skeptical reasoning, see, e.g., [24]. It would be worthwhile to explore
how the rich insight already gathered for this field could be adapted to our
problem, which exhibits the following similarities and particularities. First, the
space of possibilities is defined by two arguments: in both cases by a set of
explicitly expressed data dependencies – and their closure under entailment of
course – on the one hand and by visible data either original but incomplete one
or by fragmentation derived one, respectively, on the other hand. Second, the
aim is either to exactly determine the certain part (which would be the interest
of an attacker) or to block all options to gain any certain information, which is
the basic task of an owner’s protection mechanism.

Acknowledgment. We would like to thank Manh Linh Nguyen for stimulating dis-
cussions while he has prepared his master thesis on a partial analysis of the approach
of fragmentation with encryption to protect privacy in data storage.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Aggarwal, G., Bawa, M., Ganesan, P., Garcia-Molina, H., Kenthapadi, K., Mot-
wani, R., Srivastava, U., Thomas, D., Xu, Y.: Two can keep a secret: a distributed
architecture for secure database services. In: 2nd Biennial Conference on Innovative
Data Systems Research, CIDR 2005, pp. 186–199 (2005). Online Proceedings

3. Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP
Congress, pp. 580–583 (1974)

4. Beeri, C., Vardi, M.Y.: Formal systems for tuple and equality generating depen-
dencies. SIAM J. Comput. 13(1), 76–98 (1984). https://doi.org/10.1137/0213006

https://doi.org/10.1137/0213006

Inferences from Attribute-Disjoint and Duplicate-Preserving 95

5. Benczúr, A., Kiss, A., Márkus, T.: On a general class of data dependencies in the
relational model and its implication problem. Comput. Math. Appl. 21(1), 1–11
(1991)

6. Biskup, J.: Selected results and related issues of confidentiality-preserving con-
trolled interaction execution. In: Gyssens, M., Simari, G. (eds.) FoIKS 2016. LNCS,
vol. 9616, pp. 211–234. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
30024-5 12

7. Biskup, J., Bonatti, P.A., Galdi, C., Sauro, L.: Optimality and complexity of
inference-proof data filtering and CQE. In: Kuty�lowski, M., Vaidya, J. (eds.)
ESORICS 2014. LNCS, vol. 8713, pp. 165–181. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11212-1 10

8. Biskup, J., Link, S.: Appropriate inferences of data dependencies in relational
databases. Ann. Math. Artif. Intell. 63(3–4), 213–255 (2011). https://doi.org/10.
1007/s10472-012-9275-0

9. Biskup, J., Paredaens, J., Schwentick, T., Van den Bussche, J.: Solving equations
in the relational algebra. SIAM J. Comput. 33(5), 1052–1066 (2004). https://doi.
org/10.1137/S0097539701390859

10. Biskup, J., Preuß, M.: Database fragmentation with encryption: under which
semantic constraints and a priori knowledge can two keep a secret? In: Wang,
L., Shafiq, B. (eds.) DBSec 2013. LNCS, vol. 7964, pp. 17–32. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39256-6 2

11. Biskup, J., Preuß, M., Wiese, L.: On the inference-proofness of database fragmen-
tation satisfying confidentiality constraints. In: Lai, X., Zhou, J., Li, H. (eds.) ISC
2011. LNCS, vol. 7001, pp. 246–261. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-24861-0 17

12. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi,
S., Samarati, P.: Enforcing confidentiality constraints on sensitive databases with
lightweight trusted clients. In: Gudes, E., Vaidya, J. (eds.) DBSec 2009. LNCS,
vol. 5645, pp. 225–239. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03007-9 15

13. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Keep a few: outsourcing data while maintaining confidentiality. In:
Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 440–455. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-1 27

14. Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S.,
Samarati, P.: Combining fragmentation and encryption to protect privacy in data
storage. ACM Trans. Inf. Syst. Secur. 13(3), 22:1–22:33 (2010). Article no. 22

15. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi,
S., Samarati, P.: Fragmentation in presence of data dependencies. IEEE Trans.
Dependable Secur. Comput. 11(6), 510–523 (2014)

16. Demetrovics, J., Katona, G.O.H., Sali, A.: The characterization of
branching dependencies. Discrete Appl. Math. 40(2), 139–153 (1992).
https://doi.org/10.1016/0166-218X(92)90027–8

17. Denning, D.E.: Cryptography and Data Security. Addison-Wesley, Reading (1982)
18. Fung, B.C.M., Wang, K., Fu, A.W.C., Yu, P.S.: Introduction to Privacy-Preserving

Data Publishing - Concepts and Techniques. Chapman & Hall/CRC, Boca Raton
(2011)

19. Ganapathy, V., Thomas, D., Feder, T., Garcia-Molina, H., Motwani, R.: Distribut-
ing data for secure database services. Trans. Data Privacy 5(1), 253–272 (2012)

20. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

https://doi.org/10.1007/978-3-319-30024-5_12
https://doi.org/10.1007/978-3-319-30024-5_12
https://doi.org/10.1007/978-3-319-11212-1_10
https://doi.org/10.1007/978-3-319-11212-1_10
https://doi.org/10.1007/s10472-012-9275-0
https://doi.org/10.1007/s10472-012-9275-0
https://doi.org/10.1137/S0097539701390859
https://doi.org/10.1137/S0097539701390859
https://doi.org/10.1007/978-3-642-39256-6_2
https://doi.org/10.1007/978-3-642-24861-0_17
https://doi.org/10.1007/978-3-642-24861-0_17
https://doi.org/10.1007/978-3-642-03007-9_15
https://doi.org/10.1007/978-3-642-03007-9_15
https://doi.org/10.1007/978-3-642-04444-1_27
https://doi.org/10.1016/0166-218X%2892%2990027-8

96 J. Biskup and M. Preuß

21. Grant, J., Minker, J.: Inferences for numerical dependencies. Theor. Comput. Sci.
41, 271–287 (1985). https://doi.org/10.1016/0304-3975(85)90075–1

22. Hartmann, S.: On the implication problem for cardinality constraints and func-
tional dependencies. Ann. Math. Artif. Intell. 33(2–4), 253–307 (2001). https://
doi.org/10.1023/A:1013133428451

23. Kolahi, S., Libkin, L.: An information-theoretic analysis of worst-case redundancy
in database design. ACM Trans. Database Syst. 35(1), 5:1–5:32 (2010). https://
doi.org/10.1145/1670243.1670248

24. Libkin, L.: Certain answers as objects and knowledge. Artif. Intell. 232, 1–19
(2016). https://doi.org/10.1016/j.artint.2015.11.004

25. Sagiv, Y., Delobel, C., Parker Jr., D.S., Fagin, R.: An equivalence between rela-
tional database dependencies and a fragment of propositional logic. J. ACM 28(3),
435–453 (1981). https://doi.org/10.1145/322261.322263

26. Sali Sr., A., Sali, A.: Generalized dependencies in relational databases. Acta
Cybern. 13(4), 431–438 (1998)

27. Thalheim, B.: Entity-Relationship Modeling - Foundations of Database Technol-
ogy. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-662-04058-4

28. Xu, X., Xiong, L., Liu, J.: Database fragmentation with confidentiality constraints:
a graph search approach. In: Park, J., Squicciarini, A.C. (eds.) 5th ACM Conference
on Data and Application Security and Privacy, CODASPY 2015, pp. 263–270.
ACM (2015)

https://doi.org/10.1016/0304-3975%2885%2990075-1
https://doi.org/10.1023/A:1013133428451
https://doi.org/10.1023/A:1013133428451
https://doi.org/10.1145/1670243.1670248
https://doi.org/10.1145/1670243.1670248
https://doi.org/10.1016/j.artint.2015.11.004
https://doi.org/10.1145/322261.322263
https://doi.org/10.1007/978-3-662-04058-4

ASP Programs with Groundings of Small
Treewidth

Bernhard Bliem(B)

University of Helsinki, Helsinki, Finland
bernhard.bliem@helsinki.fi

Abstract. Recent experiments have shown ASP solvers to run signifi-
cantly faster on ground programs of small treewidth. If possible, it may
therefore be beneficial to write a non-ground ASP encoding such that
grounding it together with an input of small treewidth leads to a propo-
sitional program of small treewidth. In this work, we prove that a class
of non-ground programs called guarded ASP guarantees this property.
Guarded ASP is a subclass of the recently proposed class of connection-
guarded ASP, which is known to admit groundings whose treewidth
depends on both the treewidth and the maximum degree of the input.
Here we show that this dependency on the maximum degree cannot be
dropped. Hence, in contrast to connection-guarded ASP, guarded ASP
promises good performance even if the input has large maximum degree.

1 Introduction

Answer Set Programming (ASP) is a popular formalism for solving compu-
tationally hard combinatorial problems with applications in many domains
[6,13,17,18]. The workflow for using ASP is generally to first encode the problem
at hand in the language of non-ground ASP (i.e., as an ASP program containing
variables). Instances of that problem can then be represented as sets of ground
(i.e., variable-free) facts. To solve an instance, we give our problem encoding
together with the input facts to a grounder, which produces an equivalent ground
program, and we then call an ASP solver to compute the solutions.

The solving step is the main workhorse of this approach, so improving solver
efficiency is of great interest. One possibility of achieving this is to consider
treewidth [21], which is a parameter that intuitively measures the cyclicity of
a graph: the smaller the treewidth, the closer the graph resembles a tree. By
representing ground ASP programs as graphs, we can also use treewidth in the
context of ASP. It has turned out that the performance of modern ASP solvers is
heavily influenced by the treewidth of the given ground input program. Indeed,
an empirical evaluation [2] revealed that the solving time increases drastically
when the treewidth of the input increases but the size and the manner of con-
struction of the programs remain the same.

We typically do not encode our problems in ground ASP directly, however,
but use non-ground programs. There are usually different ways to encode a
problem in non-ground ASP. To present one example given in [2], suppose we
c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 97–113, 2018.
https://doi.org/10.1007/978-3-319-90050-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_6&domain=pdf
http://orcid.org/0000-0002-2898-2830

98 B. Bliem

want to find all vertices that are reachable from a given starting vertex in a
given graph. One way to solve this is by defining the transitive closure of the
edge relation:

trans(X,Y) ← edge(X,Y).

trans(X,Z) ← trans(X,Y), edge(Y,Z).

reach(X) ← start(X).

reach(Y) ← start(X), trans(X,Y).

Alternatively, we can avoid defining the transitive closure:
reach(X) ← start(X).

reach(Y) ← reach(X), edge(X,Y).

When these programs are grounded together with the input, they behave
quite differently not only in terms of the size of the grounding but also in terms
of the treewidth of the grounding. Indeed, as we will show in this paper, the
second program has a property that guarantees that we can find a grounding of
small treewidth whenever the input has small treewidth. Programs without this
property, like the one above relying on the transitive closure, do not allow for
this in general. Hence, the way a problem is encoded can influence the treewidth
of the ground program considerably, and as the experiments in [2] have shown,
this may also have a massive impact on the solving performance. Even though
both programs above solve the same problem, we can thus expect the second
one to have much better performance in practice.

Since the input for the solver is obtained by grounding, the way we encode our
problem in ASP may lead to groundings of huge treewidth even if our instances
actually have small treewidth. Unfortunately, it is not obvious how to write a
non-ground ASP encoding in order to achieve a low-treewidth grounding and the
benefits that come with it. Some ASP modeling techniques may be safe in the
sense that they keep the treewidth small, while others may excessively increase
it. We can usually model a problem in different ways, but it is not clear which
one should be preferred in terms of treewidth.

In an attempt to remedy this, the authors of [2] show that under certain
conditions we can find groundings that have small treewidth whenever the input
has small treewidth: They present a class of non-ground ASP programs called
connection-guarded, whose intuition is to restrict the syntax in such a way that
only a limited form of transitivity can be expressed. As shown in [2], for any fixed
connection-guarded program there are groundings whose treewidth only depends
on the treewidth and the maximum degree of the input facts. So for any fixed
connection-guarded program, as long as the maximum degree of the input is
bounded by a constant, we can find a grounding that has bounded treewidth
whenever the input has bounded treewidth. It is not clear whether this also
works for inputs of unbounded maximum degree. After all, it is conceivable that
this can be achieved by means of clever grounding techniques. Sadly, no such
techniques are known.

ASP Programs with Groundings of Small Treewidth 99

In the current work, we show that there is most likely no hope for that: We
prove that for some connection-guarded programs there can be no procedure
that produces groundings whose treewidth depends only on the treewidth of the
input (unless P = NP or grounding is allowed to take exponential time).

While the class of connection-guarded programs thus does not achieve the
goal of preserving bounded treewidth by grounding, we also present a class that
does: We prove that a restriction of connection-guarded programs called guarded
programs allows us to find groundings that preserve bounded treewidth, and
we show that we can still express some problems at the second level of the
polynomial hierarchy in that class. We also give indications for when a problem
cannot be expressed in guarded ASP.

This paper is structured as follows: First we present some preliminary notions
on ASP and treewidth in Sect. 2. Next we discuss grounding and recapitulate a
formal definition of this process from [2] in Sect. 3. The first part of our main
results is presented in Sect. 4, where we show that connection-guarded ASP does
not preserve bounded treewidth. The second part of our contributions follows in
Sect. 5, where we prove that guarded ASP preserves bounded treewidth and also
provide some complexity results. We discuss the significance and consequences of
our results in Sect. 6. Finally we conclude in Sect. 7 and hint at possible directions
for future research.

2 Preliminaries

2.1 Answer Set Programming

We briefly review syntax and semantics of ASP. A program in ASP is a set of
rules, which have the following form:

a1 ∨ . . . ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm.

The head of a rule r is the set denoted by H(r) = {a1, . . . , an}, the positive
body of r is the set B+(r) = {b1, . . . , bk}, and the negative body of r is the set
B−(r) = {bk+1, . . . , bm}. The body of r is now defined as B(r) = B+(r)∪B−(r).

If the head of a rule is empty, then we call the rule a constraint. If the body
of a rule is empty, then we we may omit the ← symbol. If the body of a rule
is empty and the head consists of a single atom, then we call the rule a fact. A
program Π is called positive if the negative body of each rule in Π is empty.

All elements of the heads or the bodies of rules are called atoms. A literal is
an atom a or its negated form not a. An atom has the form p(t1, . . . , t�), where
p is called a predicate. The elements t1, . . . , t� in an atom are called terms. A
term is either a constant or a variable. It is customary to write predicates and
constants as (strings starting with) lower-case symbols and variables as (strings
starting with) upper-case symbols. We call a program or a part of a program
(like atoms, rules, etc.) ground if it contains no variables. A predicate is called
extensional in a program Π if it only occurs in rule bodies of Π. A ground fact

100 B. Bliem

is an input fact for Π if its predicate occurs as an extensional predicate in Π.1

We write ‖Π‖ to denote the size of Π (in terms of bits required for representing
Π as opposed to the number of rules).

A rule r is safe if every variable that occurs in r occurs in an element of
B+(r). A program is safe if all its rules are safe. We only admit ASP programs
that are safe.

We define the semantics of ASP in terms of ground programs. For this, we
first show how arbitrary programs can be transformed into ground programs.

For any program Π, a ground instance of a rule r ∈ Π is any rule that
can be obtained by replacing the variables in r with constants occurring in Π.
The ground instantiation Ground(Π) of a program Π is the set of all ground
instances of all rules in Π.

We call every subset I of the atoms occurring in Ground(Π) an interpretation
of Π. An interpretation I satisfies a rule r in Ground(Π) if it contains an element
of H(r) ∪ B−(r) or if B+(r) contains an element that is not in I. We say that I
is a model of Π if it satisfies every rule in Ground(Π). We define ΠI , called the
reduct of Π w.r.t. I, as ΠI = {H(r) ← B+(r) | r ∈ Π, B−(r) ∩ I = ∅}. We call
I an answer set of Π if I is a model of Π and no proper subset of I is a model
of Π. Two ASP programs are equivalent if they have the same answer sets.

Deciding if a ground ASP program has an answer set is complete for ΣP
2 [10].

Moreover, for any fixed non-ground ASP program Π, the problem of deciding
whether, given a set F of input facts, Π ∪ F has an answer set is ΣP

2 -complete
[11].

2.2 Treewidth

Treewidth is a parameter that measures the cyclicity of graphs. It can be defined
by means of tree decompositions [21]. The intuition behind tree decompositions
is to obtain a tree T from a (potentially cyclic) graph G by subsuming multiple
vertices of G under one node of T and thereby isolating the parts responsible for
cyclicity.

Definition 1. A tree decomposition of a graph G is a pair T = (T, χ) where
T is a (rooted) tree and χ : V(T) → 2V(G) assigns to each node of T a set of
vertices of G (called the node’s bag), such that the following conditions are met:

1. For every vertex v ∈ V(G), there is a node t ∈ V(T) such that v ∈ χ(t).
2. For every edge (u, v) ∈ E(G), there is a node t ∈ V(T) such that {u, v} ⊆ χ(t).
3. If a vertex is contained in the bags of two nodes t, t′, then it is also contained

in the bags of all nodes between t and t′.

1 In the database community, one of the origins of ASP, it is common to call a non-
ground ASP program an intensional database (IDB) and a set of input facts an
extensional database (EDB). Readers used to this terminology should note that the
term “ASP program” generalizes both concepts. When the distinction between a
non-ground program and its input is important, we will make this clear by calling
the latter (i.e., the EDB) input facts.

ASP Programs with Groundings of Small Treewidth 101

Fig. 1. A ground ASP program and its primal graph

We call maxt∈V(T)|χ(t)| − 1 the width of T . The treewidth of a graph is the
minimum width over all its tree decompositions.

It is not hard to see that every tree has treewidth 1 and the complete graph
with n vertices (often denoted as Kn) has treewidth n − 1.

In general, constructing an optimal tree decomposition (i.e., a tree decompo-
sition with minimum width) is intractable [1]. However, the problem is solvable
in linear time on graphs of bounded treewidth (specifically in time wO(w3) · n,
where w is the treewidth [3]) and there are also heuristics that offer good per-
formance in practice [4,5,9].

We can easily apply the parameter treewidth to ground ASP programs by
defining a suitable representation as a graph.

Definition 2. The primal graph of a ground ASP program Π is the graph whose
vertices are the atoms occurring in Π and that has an edge between two atoms if
they appear together in a rule in Π. When we speak of the treewidth of a ground
program, we mean the treewidth of its primal graph.

Example 3. Figure 1 depicts a ground ASP program and its primal graph. One
possible tree decomposition of the primal graph consists of a chain of two nodes,
where one bag contains accept and reject, and the other bag contains accept,
attend(alice) and attend(bob). Since the largest bag of this tree decomposition
has size three, the treewidth of that program is at most two. In fact it is exactly
two, since K3 is a subgraph of the primal graph, which means that the treewidth
is at least two.

On ground ASP programs, the problem of deciding answer set existence
parameterized by the treewidth of the primal graph, is fixed-parameter tractable
(FPT; i.e., solvable in time O(f(w) · nc), where f is some computable function, c
is a constant, and the input has size n and treewidth w) [15]. In fact, this problem
can even be solved in linear time when the treewidth is bounded by a constant.

As in this work we are interested in the treewidth of groundings in relation
to the treewidth of the input of non-ground programs, we also need to define
how treewidth can be applied to input facts.

Definition 4. Let F be a set of ground facts. We write G(F) to denote the
graph whose vertices are the constants occurring in F and where there is an edge
between two vertices if the respective constants occur together in a fact.

When we speak of the treewidth or maximum degree of a set F of input facts
for a program, we mean the treewidth or maximum degree of G(F), respectively.

We can now define the property of non-ground programs that is of primary
interest in this work.

102 B. Bliem

Definition 5. We say that a (non-ground) ASP program Π preserves bounded
treewidth if, for each set F of input facts for Π there is a ground program
Π ′ such that (1) Π ′ is equivalent to Π ∪ F , (2) we can compute Π ′ in time
polynomial in ‖Π ∪F‖, and (3) the treewidth of Π ′ is at most f(‖Π‖, w), where
f is an arbitrary computable function and w is the treewidth of G(F).

We say that a class of ASP programs preserves bounded treewidth if every
program in the class does.

3 Grounding

The naive ground instantiation Ground(Π) of a program Π, as defined before,
is useful for the definition of the ASP semantics, but it blindly instantiates all
variables by all possible constants, which is usually not necessary for obtaining
an equivalent ground program. Grounders in practice may omit large parts of
Ground(Π) in order to keep the grounding as small as possible while preserv-
ing equivalence to Ground(Π). The techniques performed by state-of-the-art
grounders are quite sophisticated and differ between systems, so we define a
simplified notion of grounding for our study.

For a meaningful investigation of the relationship between the treewidth of
input facts and the treewidth of the grounding, we need to assume that the
grounder does not simply produce the naive ground instantiation, which instan-
tiates each variable with all constants and thus almost always leads to unbounded
treewidth. Instead, we use the following definition of grounding from [2], which
formalizes the idea that reasonable grounders will not produce rules whose body
is obviously false under every answer set. This simplification is so basic that it
can be assumed to be implemented by all reasonable grounders. The intuition
is that we omit a rule from the naive ground instantiation whenever its positive
body contains an atom that cannot possibly be derived.

Definition 6. Let Π be an ASP program, let Π+ denote the positive program
obtained from Π by removing the negative bodies of all rules and replacing dis-
junctions in the heads with conjunctions (that is, we replace a rule r whose head
is h1 ∨ . . . ∨ hk by rules r1, . . . , rk such that H(ri) = {hi} and the body of ri

is B+(r)). We say that an atom is possibly true in Π if it is contained in the
unique minimal model of Π+. We define the grounding of Π, denoted by gr(Π),
as the set of all rules r in Ground(Π) such that every atom in B+(r) is possibly
true.

The following example illustrates this.

Example 7. Consider the program ΠE from Fig. 2a. Following Definition 6, the
program Π+

E looks as depicted in Fig. 2b. The unique minimal model of Π+
E

consists of p(a, b), p(b, c), q(b), q(c), r(a) and r(b). This allows us to construct
the grounding gr(ΠE) as depicted in Fig. 2c. Note that gr(ΠE) does not contain,
for instance, the rule q(c) ← p(a, c), which is present in Ground(ΠE).

ASP Programs with Groundings of Small Treewidth 103

4 Connection-Guarded ASP with Unbounded Degrees

The class of connection-guarded ASP programs has been introduced in [2] in
order to preserve bounded treewidth by grounding, provided that the maximum
degree of the input is also bounded. We briefly recapitulate its definition.

Definition 8. Let Π be an ASP program. The join graph of a rule r in Π is
the graph whose vertices are the variables in r, and there is an edge between two
variables if they occur together in a positive extensional body atom of r. We call
Π connection-guarded if the join graph of each rule in Π is connected.

For any fixed connection-guarded program Π, given a set F of input facts
such that G(F) has bounded treewidth and bounded maximum degree, the
grounding gr(Π ∪ F) has bounded treewidth, as shown in [2]. However, it is
easy to see that there are connection-guarded programs such that the notion of
grounding from Definition 6 leads to ground programs of unbounded treewidth
if the degrees are unbounded.

Example 9. The program Π consisting of the rule p(X, Z) ← edge(X,Y),
edge(Y, Z) is connection-guarded, but given a set F of facts describing a star
(i.e., tree of height 1) with n vertices, the grounding gr(Π ∪ F) has unbounded
treewidth because, intuitively, it connects all vertices with each other. (More pre-
cisely, the complete graph Kn−1 is a minor of the primal graph of the grounding,
which therefore has treewidth at least n − 2.)

While this example shows that, for some connection-guarded programs,
grounding as described in Definition 6 may destroy bounded treewidth of the
input (if the maximum degree is unbounded), it does not rule out that a more
sophisticated notion of grounding may actually preserve bounded treewidth on
these programs.

In the rest of this section, we show that this cannot be the case (unless
P = NP). We do so by first expressing a problem that is known to be NP-
hard on instances of bounded treewidth as a connection-guarded ASP program.
Then we prove that P = NP holds if this program preserves bounded treewidth.
In other words, the existence of a grounder that runs in polynomial time and
preserves bounded treewidth of the input for this program implies P = NP.

Fig. 2. A program ΠE , its corresponding positive program Π+
E and grounding

104 B. Bliem

Theorem 10. The problem of deciding whether a fixed connection-guarded pro-
gram Π together with a given set F of input facts has an answer set is NP-hard.
This even holds if the treewidth of F is at most three.

Proof. We reduce from the following NP-complete problem.

Subgraph Isomorphism

Input: Graphs G and H

Question: Is there a subgraph of G that is isomorphic to H?

This problem remains NP-hard even if the treewidth of both G and H is at most
two [19].

The connection-guarded program in Fig. 3 encodes Subgraph Isomor-
phism.2 We use unary predicates vg and vh to represent the vertices of the
input graphs G and H, respectively; eg and eh are binary predicates for the
respective edges; the binary predicate bridge is used to connect each vertex of
G with a new “bridge element”, which is in turn connected to each vertex of H
also via the bridge predicate; and the binary eq predicate shall be true for all
pairs of identical vertices.

The idea behind the bridge predicate is that it allows us to make our encod-
ing connection-guarded in the following way: Whenever we have a rule that
contains two variables X,Y that are not connected in the join graph, we can
add bridge(X, b) and bridge(b, Y) to the positive body and end up with a
connection-guarded program.

Now we define a set F of input facts for an instance 〈G,H〉 of Subgraph
Isomorphism according to the intended meaning of our predicates. We use as
constants the vertices of G and H as well as a new constant b. First we add
facts {vg(v) | v ∈ V(G)} and {vh(v) | v ∈ V(H)} to F . For the edges, we add
facts {eg(v, w) | (v, w) ∈ E(G)} and {eh(v, w) | (v, w) ∈ E(H)}. Finally, we add
facts {bridge(g, b), bridge(b, h) | g ∈ V(G), h ∈ V(H)} and {eq(v, v) | v ∈
V(G) ∪ V(H)}. Note that for every fact eg(x, y) or eh(x, y) in F there is also a
fact eg(y, x) or eh(y, x), respectively, since the graphs are undirected. It is easy
to verify that this encoding is correct, so H is isomorphic to a subgraph of G if
and only if Π ∪ F has an answer set.

The treewidth of G(F) is the maximum of the treewidth of G and of H plus
one: Given tree decompositions TG and TH of G and H, respectively, we can
obtain a tree decomposition of G(F) by taking the disjoint union of TG and
TH , adding the bridge element b to every bag and drawing an edge between an
arbitrary node from TG and an arbitrary node from TH .
�

2 In practice, we could simplify this encoding substantially by using convenient lan-
guage constructs provided by ASP systems. For the purpose of this proof, we use
our rather restrictive base language. Moreover, note that the positive body of many
rules contains atoms whose only purpose is to make the rules connection-guarded.
Such redundant atoms could be omitted in practice.

ASP Programs with Groundings of Small Treewidth 105

Fig. 3. An encoding of Subgraph Isomorphism in connection-guarded ASP

The fact that solving connection-guarded ASP is NP-hard (in fact ΣP
2 -

complete) when the non-ground part is fixed has already been demonstrated
in [2]. The relevance of Theorem 10 is that it shows this problem to be NP-hard
even if the input has bounded treewidth.

This is particularly interesting because it allows us to prove that, assuming
P �= NP, there cannot be a grounder that runs in polynomial time and preserves
bounded treewidth of the input for every connection-guarded program; if there
were, we could solve Subgraph Isomorphism on instances of treewidth at
most two, which is still NP-hard, in polynomial time: We reduce the problem to
connection-guarded ASP as in the proof of Theorem 10. Grounding would then
give us a propositional program of bounded treewidth. As ground ASP can be
solved in linear time on instances of bounded treewidth [15], this would allow us
to solve the problem in polynomial time.

Theorem 11. If the class of connection-guarded ASP programs preserves
bounded treewidth, then P = NP.

Proof. Suppose connection-guarded ASP preserves bounded treewidth. Then the
connection-guarded encoding Π of Subgraph Isomorphism from the proof of

106 B. Bliem

Theorem 10 preserves bounded treewidth. In other words, for each set F of facts
that encode an instance of Subgraph Isomorphism as described in that proof,
there is a ground program ΠF such that (1) ΠF is equivalent to Π ∪ F , (2) we
can compute ΠF in time polynomial in ‖Π ∪ F‖, and (3) the treewidth of ΠF

depends only on ‖Π‖ and on the treewidth of G(F). From the results in [15] it fol-
lows that answer set existence for ground programs can be decided in linear time
on instances whose primal graph has bounded treewidth. In particular this holds
for the ground program ΠF . Hence we can solve Subgraph Isomorphism in time
O(f(w) · ‖ΠF ‖), where f is some computable function and w is the treewidth
of ΠF . As we can compute ΠF in time polynomial in ‖Π ∪ F‖, ‖ΠF ‖ is poly-
nomial in ‖Π ∪ F‖. The program Π is the same for every instance, so its size
can be considered a constant. Hence ‖ΠF ‖ is polynomial in ‖F‖ and w depends
only on the treewidth of G(F). We have seen in the proof of Theorem 10 that
the treewidth of G(F) depends only on the treewidth of the Subgraph Isomor-
phism instance. It follows that w is bounded by a constant if the treewidth of
the Subgraph Isomorphism instance is bounded by a constant. Therefore Sub-
graph Isomorphism can be solved in polynomial time on each class of instances
of bounded treewidth. As Subgraph Isomorphism is NP-complete on instances
whose treewidth is at most two [19], P = NP.
�

5 Guarded Answer Set Programs

As we have shown in the previous section, connection-guarded ASP does not
allow us to preserve bounded treewidth unless the maximum degree of the input
is also bounded. In this section, we show that a class of non-ground ASP pro-
grams called guarded ASP leads to groundings whose treewidth depends only
on the treewidth of the input. The notion of guardedness has also appeared, for
instance, in the context of the query language Datalog [14].

Definition 12. Let Π be an ASP program. We call Π guarded if every rule r
in Π has an extensional atom A in its positive body such that A contains every
variable occurring in r.

Clearly every guarded program is connection-guarded. While guarded ASP
is not as expressive, it has the advantage of allowing us to achieve what we
could not do with connection-guarded ASP: Guarded ASP preserves bounded
treewidth.

Theorem 13. If Π is a fixed guarded ASP program containing c constants and
k predicates of arity at most �, and F is a set of input facts for Π such that
G(F) has treewidth w, then the treewidth of the primal graph of gr(Π ∪ F) is at
most k · (w + c + 1)� − 1.

Proof. Let T be a tree decomposition of G(F) having width w, and let C denote
the constants in Π. We construct a tree decomposition T ′ having width k · (w +
c+1)� −1 of a supergraph of the primal graph of gr(Π ∪F). Since the treewidth
of a subgraph is at most the treewidth of the whole graph, the statement follows.

ASP Programs with Groundings of Small Treewidth 107

We define the tree in T ′ to be isomorphic to the tree in T . Let N be a node
in T and B be its bag. We define the bag B′ of the corresponding node N ′ in
T ′ to consist of all atoms p(x) such that p is a predicate occurring in Π and x
is a tuple of elements of B ∪ C. The size of B′ is then at most k · (w + c + 1)�. It
remains to show that T ′ is indeed a tree decomposition of a supergraph of the
primal graph of gr(Π ∪ F).

For every atom p(x) in a rule r of the grounding, we know from guarded-
ness that there is a ground atom g(y) in the positive body of r such that g is
extensional and every element of x that is not a constant is also an element of
y. Since g is extensional, there is a node in T whose bag contains all elements of
y. By our construction, the bag of the corresponding node in T ′ contains p(x).

If two atoms p(x) and q(y) occur together in a rule r of the grounding, then
from guardedness we infer that r also contains an atom g(z) in the positive body
of r such that g is extensional and every element of x or y that is not a constant
is also an element of z. As before, it follows that the bag of a node in T contains
all elements of x and y that are not constants, and the bag of the corresponding
node in T ′ contains both p(x) and q(y).

If the bags of two nodes N ′,M ′ of T ′ both contain an atom p(x), then the
bags of the corresponding nodes N,M in T contain all elements of x that are
not constants. By the definition of tree decompositions, every bag of each node
between N and M in T contains all elements of x that are not constants. Hence,
by our construction, the bags of all nodes between N ′ and M ′ in T ′ contain
p(x). This proves that T ′ is a tree decomposition of a supergraph of the primal
graph of gr(Π ∪ F), and its width is at most k · (w + c)� − 1.
�

Since the guarded program Π and thus c, k and � are fixed, this shows that
the treewidth of the primal graph of gr(Π ∪ F) is polynomial in the treewidth
of the input F .

Combining Theorem 13 with the known fixed-parameter tractability of
ground ASP parameterized by treewidth, we immediately get the following
result:

Corollary 14. For every fixed guarded ASP program Π, the problem of deciding
for a given set F of input facts whether Π ∪ F has an answer set is fixed-
parameter tractable when parameterized by the treewidth of G(F).

This is in contrast to connection-guarded ASP. As we have shown in Theo-
rem 10, for fixed connection-guarded programs the answer set existence problem
is most likely not FPT when parameterized by the treewidth of the input facts.
Yet this problem is FPT when parameterized by both the treewidth and the
maximum degree [2]. To complete the picture of the parameterized complexity
of the problem with these two parameters, we analyze the remaining case when
just the maximum degree is the parameter. We prove that bounded maximum
degree alone is also not sufficient for obtaining fixed-parameter tractability, even
if the program is guarded.

108 B. Bliem

Fig. 4. An encoding of Qsat2 in guarded ASP

Theorem 15. It is ΣP
2 -complete to decide for a fixed guarded program Π and a

given set F of input facts whether Π ∪F has an answer set even if the maximum
degree of G(F) is at most 15.

Proof. For membership, we guess an interpretation I and then check by calling
a co-NP oracle whether I is a minimal model of gr(Π ∪ F)I . We first show ΣP

2 -
hardness for the case when the maximum degree of G(F) may be unbounded.
Afterwards we show how this construction can be adjusted to obtain degrees of
at most 15.

We present a guarded encoding for the well-known ΣP
2 -complete problem

Qsat2. We are given a formula ∃x1 · · · ∃xk∀y1 · · · ∀y� ϕ, where ϕ is a formula in
3-DNF (i.e., a disjunction of conjunctive terms, each containing at most three
literals), and the question is whether there are truth values for the x variables
such that for all truth values for the y variables ϕ is true. We assume that each
disjunct in ϕ contains exactly three literals, which can be achieved by using the
same literal multiple times in a disjunct.

Consider the ASP program in Fig. 4, which is based on the encoding in
Sect. 3.3.5 of [16]. The Qsat2 formula is represented as a set F of input facts as
follows: We will use each variable in ϕ as a constant symbol, and we introduce
new constant symbols t and f. First we put facts verum(t) and falsum(f) into
F . Then, for each existentially or universally quantified variable x, we add a fact
exists(x) or forall(x), respectively. Finally, for each disjunct l1 ∧ l2 ∧ l3 in the
formula, we put a fact term(p1, p2, p3, q1, q2, q3) into F , where pi denotes vi if li
is a positive atom vi, otherwise pi = t, and qi denotes vi if li is an atom of the
form not vi, otherwise qi = f. The fact term(p1, p2, p3, q1, q2, q3) thus represents
p1 ∧ p2 ∧ p3 ∧ ¬q1 ∧ ¬q2 ∧ ¬q3, which is equivalent to the original disjunct. This
program is clearly guarded and indeed encodes the Qsat2 problem, as can be
seen by the arguments in [16].

This shows ΣP
2 -hardness of answer set existence for fixed guarded programs.

We still have to prove that ΣP
2 -hardness holds even if the maximum degree of

G(F) is at most 15. For this, we first show that we may assume every variable
to occur at most three times in ϕ by a construction that has appeared in [20].

Observe that, for each sequence of variables z1, . . . , zm, saying that two vari-
ables in this sequence have different truth values is equivalent to saying that

ASP Programs with Groundings of Small Treewidth 109

(a) some variable zi is false but zi+1 is true, or (b) zm is false but z1 is true.
With this in mind, we obtain a formula ϕ′ from ϕ by replacing every occurrence
of an (either existentially or universally quantified) variable z by a new variable
zi, where i is the number of the respective occurrence in ϕ. (That is, the first
occurrence of z in ϕ is replaced by z1, the second by z2, and so on.) To estab-
lish the connections between the copies of an old variable, we observe that the
following statements are equivalent:

1. There are truth values for the x variables such that, for all truth values for
the y variables, ϕ is true.

2. There are truth values for the x variables such that, for all truth values for
the y variables and for all truth values for the new copies, the following holds:
If every old variable z has the same truth value as all of its copies, then ϕ′ is
true.

3. There are truth values for the x variables such that, for all truth values for
the y variables and for all truth values for the new copies, the following holds:
The formula ϕ′ is true or, for some old variable z with copies z1, . . . , zm, two
variables in the sequence z, z1, . . . , zm have different truth values.

4. There are truth values for the x variables such that, for all truth values for the
y variables and for all truth values for the new copies, the following formula
is true, where Var(ϕ) denotes the variables occurring in ϕ:

ϕ′∨
∨

z∈Var(ϕ) with m copies

(
(¬z∧z1)∨(¬z1∧z2)∨· · ·∨(¬zm−1∧zm)∨(¬zm∧z)

)

Thus we obtain an equivalent formula where each variable occurs at most three
times.

In contrast to before, where we showed ΣP
2 -hardness when the maximum

degree of G(F) may be unbounded, we now need to choose slightly differ-
ent input facts because the domain elements t and f from the previous con-
struction have unbounded degree. Recall that the old construction puts a fact
term(p1, p2, p3, q1, q2, q3) into F for each disjunct in ϕ and that some pi or qj may
be t or f in order to represent the equivalent term p1 ∧p2 ∧p3 ∧¬q1 ∧¬q2 ∧¬q2.
The only thing that matters for t and f is that they are always interpreted as
true and false, respectively, which the old construction ensures with the facts
verum(t) and falsum(f). We can thus just use a certain number of copies of t
and f such that every copy occurs in exactly one fact over the term predicate
and for each copy x we have the respective fact verum(x) or falsum(x). Clearly
this reduction to ASP is still correct. The maximum degree of G(F) is at most
15 because every vertex has at most five neighbors from each fact over the term
predicate and every variable occurs in at most three such facts.
�

6 Discussion

Guardedness is evidently a rather strong restriction, even more so than
connection-guardedness. Yet, as we have seen in Theorem 15, the restrictions

110 B. Bliem

imposed by guardedness do not alleviate the complexity of deciding answer set
existence for fixed non-ground programs compared to the general case. Beside the
encoding of Qsat2 that we have presented, there are also several other relevant
problems for which there are straightforward encodings in guarded ASP. But
clearly there are also many problems that cannot be expressed in guarded ASP
under common complexity-theoretic assumptions. As we have seen in Corol-
lary 14, expressing a problem in guarded ASP amounts to a proof that the
problem is FPT when parameterized by treewidth. Hence we most likely cannot
find a guarded encoding for any problem that is W[1]-hard for treewidth.

We have argued in Theorem 15 that solving guarded ASP is as hard as ASP
in general. In other words, every problem in ΣP

2 can be reduced in polynomial
time to guarded ASP, so one might be confused by our claim that we most
likely cannot express any W[1]-hard problem in guarded ASP. After all, there are
many problems in ΣP

2 that are W[1]-hard when parameterized by treewidth. Note,
however, that in general a polynomial-time reduction may increase the treewidth
arbitrarily. When talking about the parameterized complexity of problems, we
must, however, make sure that our reductions preserve the parameter. So we can
indeed find polynomial-time reductions to guarded ASP from some problems
that, when parameterized by treewidth, are W[1]-hard, but this requires us to
change the problem instances in such a way that the treewidth of the resulting
input facts no longer depends only on the treewidth of the original instance.

One may also ask how our result that guarded ASP preserves bounded
treewidth relates to grounders in practice. In our investigation of the effect of
grounding on the treewidth, we rely on the rather primitive notion of ground-
ing from Definition 6. State-of-the-art grounders, on the other hand, produce
groundings whose primal graphs are generally subgraphs of those resulting from
our definition of grounding. However, since the treewidth of a subgraph is always
at most the treewidth of the whole graph, our result applies also to state-of-the-
art grounders.

Moreover, state-of-the-art grounders are capable of solving problems with-
out needing to call an ASP solver if the program has an answer set that is a
deterministic consequence of the input, i.e., if no non-deterministic guessing is
involved. This is the case, for instance, for Horn programs (that is, ASP pro-
grams without negation or disjunction). Our notion of grounding, on the other
hand, assumes that the grounder does not propagate deterministic consequences
and thus cannot solve such simple problems by itself. This is in fact a reasonable
assumption for our purposes: In this work we investigated syntactic subclasses of
ASP, which means that we are merely interested in the form of the non-ground
rules. Observe that, for each program that can be solved by the grounder as
described before, we can add some rules that force atoms to be guessed. This
prevents the grounder from eliminating atoms from rule bodies, and it does not
change the form of the original rules. Enforcing the guesses can be done with
syntactically very simple (in fact guarded) rules, so in general grounders cannot
solve guarded programs themselves. (Still, Theorem 13 could of course be slightly
extended by allowing for some violations of the guardedness criterion as long as

ASP Programs with Groundings of Small Treewidth 111

some property of the program guarantees that we can make simplifications that
“restore” guardedness.)

Finally, we would like to mention that answer set solving (to be precise, the
so-called brave reasoning problem) is still fixed-parameter tractable for guarded
(cf. Corollary 14) and even connection-guarded programs when we add weak
constraints and aggregates [7] to our language. It is not hard to prove this by
translating these constructs into optimization rules and weight rules, respec-
tively, and then invoking the FPT algorithm from [12].

7 Conclusion

In this work, we showed that the class of connection-guarded ASP programs does
not preserve bounded treewidth (unless P = NP). That is, for some connection-
guarded programs it is impossible to compute a grounding whose treewidth
is “small” whenever the input facts have “small” treewidth (unless grounding
is allowed to take exponential time or P = NP). At the same time, we have
proven that the more restrictive class of guarded ASP programs achieves the
goal of preserving bounded treewidth. It may therefore be a good idea to encode
problems in guarded ASP whenever possible, since ASP solvers appear to run
much faster on groundings of small treewidth. Unsurprisingly, not all problems
can be expressed in guarded ASP. In particular, we proved that problems that are
not FPT w.r.t. treewidth cannot be expressed in this class. For several problems
it is, however, possible to find straightforward guarded encodings (e.g., several
standard graph problems such as graph coloring, vertex cover, dominating set, or
some reachability-based problems as shown in the example from Sect. 1). Despite
the syntactical restrictions imposed by guardedness, ASP solving in this class
does not become easier compared to the general case. As we showed, guarded
ASP still allows us to express ΣP

2 -complete problems.
In the future, it may be interesting to investigate the relationship of guarded

and connection-guarded ASP to well-known tools for classifying a problem as
FPT for the parameter treewidth. In particular, the famous result by Courcelle
[8] states that every problem that is expressible in monadic second-order (MSO)
logic is FPT w.r.t. treewidth. Similarly, we have seen in Corollary 14 that also
every problem that is expressible in guarded ASP is FPT. Since answer-set solv-
ing for guarded programs is ΣP

2 -complete in general (cf. Theorem 15), whereas
MSO model checking is PSPACE-complete, guarded ASP seems to be strictly
weaker than MSO. We suspect that this still holds if we add aggregates to
guarded ASP. For connection-guarded ASP, however, we conjecture that adding
aggregates allows us to encode problems that are not expressible in MSO and its
known extensions. We thus expect that connection-guarded ASP can be used as a
classification tool for getting FPT results when the parameter is the combination
of treewidth and maximum degree.

Acknowledgments. This work was supported by the Austrian Science Fund (FWF,
project Y698) and by the Academy of Finland (grant 312662). Part of this work was
done when the author was employed at TU Wien, Vienna, Austria.

112 B. Bliem

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebr. Discrete Methods 8(2), 277–284 (1987)

2. Bliem, B., Moldovan, M., Morak, M., Woltran, S.: The impact of treewidth on
ASP grounding and solving. In: Sierra, C. (ed.) Proceedings of IJCAI 2017, pp.
852–858. AAAI Press (2017)

3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

4. Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-
Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30577-4 1

5. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds.
Inf. Comput. 208(3), 259–275 (2010)

6. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

7. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Ricca, F., Schaub, T.: ASP-Core-2 input language format, Version: 2.03c
(2015). https://www.mat.unical.it/aspcomp2013/ASPStandardization

8. Courcelle, B.: The monadic second-order logic of graphs I: recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

9. Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B., Musliu, N., Samer, M.:
Heuristic methods for hypertree decomposition. In: Gelbukh, A., Morales, E.F.
(eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp. 1–11. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-88636-5 1

10. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
propositional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995)

11. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans. Database
Syst. 22(3), 364–418 (1997)

12. Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Answer set solving with bounded
treewidth revisited. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS
(LNAI), vol. 10377, pp. 132–145. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61660-5 13

13. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers, Williston (2012)

14. Gottlob, G., Grädel, E., Veith, H.: Datalog LITE: a deductive query language with
linear time model checking. ACM Trans. Comput. Log. 3(1), 42–79 (2002)

15. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of
knowledge representation and reasoning. Artif. Intell. 174(1), 105–132 (2010)

16. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Log. 7(3), 499–562 (2006)

17. Lifschitz, V.: What is answer set programming? In: Fox, D., Gomes, C.P. (eds.)
Proceedings of AAAI 2008, pp. 1594–1597. AAAI Press (2008)

18. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic program-
ming paradigm. In: Apt, K., Marek, V.W., Truszczyński, M., Warren, D.S. (eds.)
The Logic Programming Paradigm: A 25-Year Perspective, pp. 375–398. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-642-60085-2 17

https://doi.org/10.1007/978-3-540-30577-4_1
https://www.mat.unical.it/aspcomp2013/ASPStandardization
https://doi.org/10.1007/978-3-540-88636-5_1
https://doi.org/10.1007/978-3-319-61660-5_13
https://doi.org/10.1007/978-3-319-61660-5_13
https://doi.org/10.1007/978-3-642-60085-2_17

ASP Programs with Groundings of Small Treewidth 113

19. Matoušek, J., Thomas, R.: On the complexity of finding iso- and other morphisms
for partial k-trees. Discrete Math. 108(1–3), 343–364 (1992)

20. Peters, D.: Σp
2 -complete problems on hedonic games, Version: 2. CoRR

abs/1509.02333 (2017). http://arxiv.org/abs/1509.02333
21. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.

Theory Ser. B 36(1), 49–64 (1984)

http://arxiv.org/abs/1509.02333

Rationality and Context in Defeasible
Subsumption

Katarina Britz1 and Ivan Varzinczak2,1(B)

1 CSIR-SU CAIR, Stellenbosch University, Stellenbosch, South Africa
abritz@sun.ac.za

2 CRIL, Univ. Artois & CNRS, Lens, France
varzinczak@cril.fr

Abstract. Description logics have been extended in a number of ways to
support defeasible reasoning in the KLM tradition. Such features include
preferential or rational defeasible concept subsumption, and defeasible
roles in complex concept descriptions. Semantically, defeasible subsump-
tion is obtained by means of a preference order on objects, while defeasi-
ble roles are obtained by adding a preference order to role interpretations.
In this paper, we address an important limitation in defeasible extensions
of description logics, namely the restriction in the semantics of defeasible
concept subsumption to a single preference order on objects. We do this
by inducing a modular preference order on objects from each preference
order on roles, and use these to relativise defeasible subsumption. This
yields a notion of contextualised rational defeasible subsumption, with
contexts described by roles. We also provide a semantic construction for
and a method for the computation of contextual rational closure, and
present a correspondence result between the two.

1 Introduction

Description Logics (DLs) [2] are decidable fragments of first-order logic that serve
as the formal foundation for Semantic-Web ontologies. As witnessed by recent
developments in the field, DLs still allow for meaningful, decidable extensions,
as new knowledge representation requirements are identified. A case in point is
the need to allow for exceptions and defeasibility in reasoning over logic-based
ontologies [4–6,12,13,15,19,21,23–25,29,30,34,36]. Yet, DLs do not allow for
the direct expression of and reasoning with different aspects of defeasibility.

Given the special status of concept subsumption in DLs in particular, and the
historical importance of entailment in logic in general, past research efforts in this
direction have focused primarily on accounts of defeasible subsumption and the
characterisation of defeasible entailment. Semantically, the latter usually takes
as point of departure orderings on a class of first-order interpretations, whereas
the former usually assume a preference order on objects of the domain.

Recently, we proposed decidable extensions of DLs supporting defeasible
knowledge representation and reasoning over ontologies [19,21,22]. Our proposal

c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 114–132, 2018.
https://doi.org/10.1007/978-3-319-90050-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_7&domain=pdf
http://orcid.org/0000-0002-0025-9632

Rationality and Context in Defeasible Subsumption 115

built on previous work to resolve two important ontological limitations of the
preferential approach to defeasibility in DLs—the assumption of a single pref-
erence order on all objects in the domain of interpretation, and the assumption
that defeasibility is intrinsically linked to arguments or conditionals [18,20].

We achieved this by introducing non-monotonic reasoning features that any
classical DL can be extended with in the concept language, in subsumption
statements and in role assertions, via an intuitive notion of normality for roles.
This parameterised the idea of preference while at the same time introducing
the notion of defeasible class membership. Defeasible subsumption allows for the
expression of statements of the form “C is usually subsumed by D”, for example,
“Chenin blanc wines are usually unwooded”. In the extended language, one can
also refer directly to, for example, “Chenin blanc wines that usually have a wood
aroma”. We can also combine these seamlessly, as in: “Chenin blanc wines that
usually have a wood aroma are usually wooded”. This cannot be expressed in
terms of defeasible subsumption alone, nor can it be expressed w.l.o.g. using
typicality-based operators [8,26,27] on concepts. This is because the semantics
of the expression is inextricably tied to the two distinct uses of the term ‘usually’.

Nevertheless, even this generalisation leaves open the question of different,
possibly incompatible, notions of defeasibility in subsumption, similar to those
studied in contextual argumentation [1,3]. In the statement “Chenin blanc wines
are usually unwooded”, the context relative to which the subsumption is normal
is left implicit—in this case, the style of the wine. In a different context such as
consumer preference or origin, the most preferred (or normal, or typical) Chenin
blanc wines may not correlate with the usual wine style. Wine x may be more
exceptional than y in one context, but less exceptional in another context. This
represents a form of inconsistency in defeasible knowledge bases that could arise
from the presence of named individuals in the ontology. The example illustrates
why a single ordering on individuals does not suffice. It also points to a natural
index for relativised context, namely the use of preferential role names as we
have previously proposed [19]. Using role names rather than concept names to
indicate context has the advantage that constructs to form complex roles are
either absent or limited to role composition.

In this paper, we therefore propose to induce preference orders on objects
from preference orders on roles, and use these to relativise defeasible subsump-
tion. This yields a notion of contextualised defeasible subsumption, with contexts
described by roles. The remainder of the present paper is structured as follows: in
Sect. 2, we provide a summary of the required background on ALC, the prototyp-
ical description logic and on which we shall focus in the present work. In Sect. 3,
we introduce an extension of ALC to represent both defeasible constructs on com-
plex concepts and contextual defeasible subsumption. In Sect. 4, we address the
most important question from the standpoint of knowledge representation and
reasoning with defeasible ontologies, namely that of entailment from defeasible
knowledge bases. In particular, we present a semantic construction of contextual
rational closure and provide a method for computing it. Finally, with Sect. 5 we
conclude the paper.

116 K. Britz and I. Varzinczak

We shall assume the reader’s familiarity with the preferential approach to
non-monotonic reasoning [31,33,37]. Whenever necessary, we refer the reader to
the definitions and results in the relevant literature.

2 The Description Logic ALC
The (concept) language of ALC is built upon a finite set of atomic concept
names C, a finite set of role names R and a finite set of individual names I such
that C, R and I are pairwise disjoint. With A,B, . . . we denote atomic concepts,
with r, s, . . . role names, and with a, b, . . . individual names. Complex concepts
are denoted with C,D, . . . and are built according to the following rule:

C ::= � | ⊥ | A | ¬C | C � C | C � C | ∀r.C | ∃r.C

With LALC we denote the language of all ALC concepts.
The semantics of LALC is the standard set theoretic Tarskian semantics. An

interpretation is a structure I := 〈ΔI , ·I〉, where ΔI is a non-empty set called
the domain, and ·I is an interpretation function mapping concept names A to
subsets AI of ΔI , role names r to binary relations rI over ΔI , and individual
names a to elements of the domain ΔI , i.e., AI ⊆ ΔI , rI ⊆ ΔI × ΔI , aI ∈ ΔI .
Define rI(x) := {y | (x, y) ∈ rI}. We extend the interpretation function ·I to
interpret complex concepts of LALC in the following way:

�I := ΔI , ⊥I := ∅, (¬C)I := ΔI \ CI

(C � D)I := CI ∩ DI , (C � D)I := CI ∪ DI

(∃r.C)I := {x ∈ ΔI | rI(x) ∩ CI �= ∅}, (∀r.C)I := {x ∈ ΔI | rI(x) ⊆ CI}

Given C,D ∈ LALC , C � D is called a subsumption statement, or general
concept inclusion (GCI), read “C is subsumed by D”. C ≡ D is an abbreviation
for both C � D and D � C. An ALC TBox T is a finite set of subsumption
statements and formalises the intensional knowledge about a given domain of
application. Given C ∈ LALC , r ∈ R and a, b ∈ I, an assertional statement (asser-
tion, for short) is an expression of the form a : C or (a, b) : r. An ALC ABox A
is a finite set of assertional statements formalising the extensional knowledge
of the domain. We shall denote statements, both subsumption and assertional,
with α, β, Given T and A, with KB := T ∪ A we denote an ALC knowledge
base, a.k.a. an ontology.

An interpretation I satisfies a subsumption statement C � D (denoted I �
C � D) if and only if CI ⊆ DI . I satisfies an assertion a : C (respectively,
(a, b) : r), denoted I � a : C (respectively, I � (a, b) : r), if and only if aI ∈ CI

(respectively, (aI , bI) ∈ rI).
An interpretation I is a model of a knowledge base KB (denoted I � KB)

if and only if I � α for every α ∈ KB. A statement α is (classically) entailed
by KB, denoted KB |= α, if and only if every model of KB satisfies α.

For more details on Description Logics in general and on ALC in particular,
the reader is invited to consult the Description Logic Handbook [2].

Rationality and Context in Defeasible Subsumption 117

3 Contextual Defeasibility in DLs

In this section, we introduce an extension of ALC to represent both defeasible
constructs on complex concepts and contextual defeasible subsumption. The
logic presented here draws on the introduction of defeasible roles [19] and recent
preliminary work on context-based defeasible subsumption for SROIQ [21,22].

3.1 Defeasible Constructs

Our previous investigations of defeasible DLs included parameterised defeasible
constructs on concepts based on preferential roles, in the form of defeasible value
and existential restriction of the form

∨∼r.C and −∼−|r.C. Intuitively, these concept
descriptions refer respectively to individuals whose normal r-relationships are
only to individuals from C, and individuals that have some normal r-relationship
to an individual from C. However, while these constructs allowed for multiple
preference orders on (the interpretation of) roles, only a single preference order
on objects was assumed. This was somewhat of an anomaly, which we address
here by adding context-based orderings on objects that are derived from pref-
erential roles [21]. Briefly, each preferential role r, interpreted as a strict partial
order on the binary product space of the domain, gives rise to a context-based
order on objects as detailed in Definition 3 below.

The (concept) language of defeasible ALC, or dALC, is built according to the
following rule:

C ::= � | ⊥ | A | ¬C | C � C | C � C | ∀r.C | ∃r.C | ∨∼r.C | −∼−|r.C

With LdALC we denote the language of all dALC concepts.
The extension of ALC we propose here also adds contextual defeasible sub-

sumption statements to knowledge bases. Given C,D ∈ LdALC and r ∈ R, C�∼rD
is a defeasible subsumption statement or defeasible GCI, read “C is usually sub-
sumed by D in the context r”. A defeasible dALC TBox D is a finite set of
defeasible GCIs. A classical dALC TBox T is a finite set of (classical) subsump-
tion statements C � D (i.e., T may contain defeasible concept constructs, but
not defeasible concept inclusions).

This begs the question of adding some version of “contextual classical sub-
sumption” to the TBox, but, as we shall see in Sect. 3.2, this simply reduces to
classical subsumption.

Given a classical dALC TBox T , an ABox A and a defeasible dALC TBox D,
from now on we let KB := T ∪D∪A and refer to it as a defeasible dALC knowledge
base (alias defeasible ontology).

3.2 Preferential Semantics

We shall anchor our semantic constructions in the well-known preferential app-
roach to non-monotonic reasoning [31,33,37] and its extensions [7–9,11,16–18],
especially those in DLs [15,19,28,35].

118 K. Britz and I. Varzinczak

Let X be a set and let < be a strict partial order on X. With min< X :=
{x ∈ X | there is no y ∈ X s.t. y < x} we denote the minimal elements of X
w.r.t. <. With #X we denote the cardinality of X.

Definition 1 (Ordered Interpretation). An ordered interpretation is a
tuple O := 〈ΔO, ·O,�O〉 such that:

• 〈ΔO, ·O〉 is an ALC interpretation, with AO ⊆ ΔO, for each A ∈ C, rO ⊆
ΔO × ΔO, for each r ∈ R, and aO ∈ ΔO, for each a ∈ I, and

• �O:= 〈�O
1 , . . . ,�O

#R〉, where �O
i ⊆ rO

i × rO
i , for i = 1, . . . ,#R, and such

that each �O
i is a strict partial order and satisfies the smoothness condi-

tion [31].

As an example, suppose C := {A1, A2, A3}, R := {r1, r2}, I := {a1, a2, a3},
and O = 〈ΔO, ·O,�O〉, with ΔO = {xi | 1 ≤ i ≤ 9}, AO

1 = {x1,
x4, x6}, AO

2 = {x3, x5, x9}, AO
3 = {x6, x7, x8}, rO

1 = {(x1, x6), (x4, x8), (x2, x5)},
rO
2 = {(x4, x4), (x6, x4), (x5, x8), (x9, x3)}, aO

1 = x5, aO
2 = x1, aO

3 = x2, and
�O

1 = {(x4x8, x2x5), (x2x5, x1x6), (x4x8, x1x6)} and �O
2 = {(x6x4, x4x4),

(x5x8, x9x3)}. (For the sake of readability, we shall henceforth sometimes write
tuples of the form (x, y) as xy.) Fig. 1 below depicts the r-ordered interpretation
O. In the picture, �O

1 and �O
2 are represented, respectively, by the dashed and

the dotted arrows. (Note the direction of the �O-arrows, which point from more
preferred to less preferred pairs of objects. Also for the sake of readability, we
omit the transitive �O-arrows.)

O : ΔO

AO
1 AO

2

AO
3

xa2
1 xa3

2
x3

x4 xa1
5

x6 x7 x8 x9

r1

r2 r1 r2

r1

r2

r2

Fig. 1. A dALC ordered interpretation.

Given O = 〈ΔO, ·O,�O〉, the intuition of ΔO and ·O is the same as in
a standard DL interpretation. The intuition underlying each of the orderings
in �O is that they play the role of preference relations (or normality order-
ings), in a sense similar to that introduced by Shoham [37] with a preference

Rationality and Context in Defeasible Subsumption 119

on worlds in a propositional setting and as investigated by Kraus et al. [31,33]
and others [11,14,26]: the pairs (x, y) that are lower down in the ordering �O

i

are deemed as the most normal (or typical, or expected, or conventional) in the
context of (the interpretation of) ri.

In the following definition we show how ordered interpretations can be
extended to interpret the complex concepts of the language.

Definition 2 (Concept Interpretation). Let O = 〈ΔO, ·O,�O〉, let r ∈ R

and let r
O|x
i := rO

i ∩ ({x} × ΔO) (i.e., the restriction of the domain of rO
i to

{x}). The interpretation function ·O interprets dALC concepts as follows:

�O := ΔO; ⊥O := ∅;
(¬C)O := ΔO \ CO;
(C � D)O := CO ∩ DO;
(C � D)O := CO ∪ DO;
(∀r.C)O := {x | rO(x) ⊆ CO};
(
∨∼r.C)O := {x | min�O

r
(rO|x)(x) ⊆ CO};

(∃r.C)O := {x | rO(x) ∩ CO �= ∅};
(−∼−|r.C)O := {x | min�O

r
(rO|x)(x) ∩ CO �= ∅}.

If, as in Definition 2, the role name r is not indexed, we use r itself as subscript
in �O

r . It is not hard to see that, analogously to the classical case,
∨∼ and −∼−| are

dual to each other.

Definition 3 (Satisfaction). Let O = 〈ΔO, ·O,�O〉, r ∈ R, C,D ∈ LdALC,
and a, b ∈ I. Define ≺O

r ⊆ ΔO × ΔO as follows:

≺O
r := {(x, y) | (∃(x, z) ∈ rO)(∀(y, v) ∈ rO)[((x, z), (y, v)) ∈ �O

r]}.

The satisfaction relation � is defined as follows:

O � C � D if CO ⊆ DO;
O � C �∼rD if min≺O

r
CO ⊆ DO;

O � a : C if aO ∈ CO;
O � (a, b) : r if (aO, bO) ∈ rO.

If O � α, then we say O satisfies α. O satisfies a defeasible knowledge base KB,
written O � KB, if O � α for every α ∈ KB, in which case we say O is a model
of KB. We say C ∈ LdALC is satisfiable w.r.t. KB if there is a model O of KB
s.t. CO �= ∅.

It follows from Definition 3 that, if �O
r = ∅, i.e., if no r-tuple is preferred to

another, then �∼r reverts to �. This reflects the intuition that the context r be
taken into account through the preference order on rO. In the absence of any
preference, the context becomes irrelevant. This also shows why the classical
counterpart of �∼r is independent of r—context is taken into account in the form
of a preference order, but preference has no bearing on the semantics of �.

The following result, of which the proof extends that in the classical case to
deal with preferences, will come in handy in Sect. 4.2:

120 K. Britz and I. Varzinczak

Lemma 1. dALC ordered interpretations are closed under disjoint union.

Lemma 2 below shows that every preferential role interpretation gives rise to
a preference order on objects in the domain. Conversely, Lemma 3 shows that
every strict partial order on objects in the domain ΔO can be obtained from some
strict partial order on the interpretation of a new role name as in Definition 3.
This means that the more traditional preference order on all objects in the
domain is a special case of our proposal.

Lemma 2. Let O = 〈ΔO, ·O,�O〉, r ∈ R and let ≺O
r be as in Definition 3.

Then ≺O
r is a strict partial order on ΔO.

Proof. We show that ≺O
r is (i) transitive, (ii) irreflexive and (iii) antisymmetric.

(i) Suppose (x, y) ∈≺O
r and (y, z) ∈≺O

r . Then ∃(x, u) ∈ rO and ∃(y, v) ∈ rO

such that (∀(z, v′) ∈ rO)[((x, u), (y, v)) ∈�O
r and ((y, v), (z, v′)) ∈ �O

r].
Since �O

r is transitive, (x, z) ∈≺O
r . Hence ≺r is transitive.

(ii) Suppose (x, x) ∈≺O
r , then ∃(x, y) ∈ rO such that ((x, y), (x, y)) ∈�O

r , which
contradicts the irreflexivity of �O

r . Hence ≺O
r is irreflexive.

(iii) Suppose (x, y) ∈≺O
r and (y, x) ∈≺O

r . Then (∃(x, z) ∈ rO)(∃(y, u) ∈
rO[((x, z), (y, u)) ∈�O

r and ((y, u), (x, z)) ∈�O
r], which contradicts the

asymmetry of �. Hence ≺O
r is asymmetric (antisymmetric and irreflexive).

��

Lemma 3. Let O = 〈ΔO, ·O,�O〉, and let ≺ be a strict partial order on ΔO.
Let O′ be an extension of O with fresh role name r ∈ R added, such that O′ �
� � ∃r.�, and �O′

r := {((x, z), (y, v)) | x ≺ y and (x, z), (y, v) ∈ rO′}. Define
≺O′

r as in Definition 3. Then ≺ =≺O′
r .

Proof. Suppose (x, y) ∈ ≺. Then x and y are both in the domain of rO′
,

and ((x, z), (y, v)) ∈ �O′
r for all (x, z), (y, v) ∈ rO′

. Therefore (x, y) ∈
≺O′

r . Conversely, suppose (x, y) ∈ ≺O′
r . Then (∃(x, z) ∈ rO′

)(∀(y, v) ∈
rO′

)[((x, z), (y, v)) ∈ �O′
r]. Since y is in the domain of rO′

, (x, y) ∈ ≺. ��

Corollary 1. Let O′, ≺ and r be as in Lemma 3, and let �∼ be defined by:
O′ � C �∼D if and only if min≺ CO′ ⊆ DO′

. Then �∼r has the same semantics
as �∼.

Corollary 1 states that, in the special case where the domain of a new desig-
nated context-providing role includes all objects, contextual defeasible subsump-
tion coincides with defeasible subsumption based on a single preference order.
For the more general parameterised case, consider the role hasOrigin, which links
individual wines to origins. Wine y is considered more exceptional than x w.r.t.
its origin if it has some more exceptional origin link than x, and none that are
less exceptional.

Contextual defeasible subsumption �∼r can therefore also be viewed as defea-
sible subsumption based on a preference order on objects in the domain of rO,
bearing in mind that, in any given interpretation, it is dependent on �O

r . For

Rationality and Context in Defeasible Subsumption 121

the remainder of this paper, we use �∼ as abbreviation for �∼r, where r is a new
role name introduced as in Lemma 3.

This raises the question whether a preference order on objects in the range
of rO could be considered as an alternative. In a more expressive language allow-
ing for role inverses, �∼inv(r) achieves this goal [21], but in dALC, this would have
to be added as an additional language construct.

Proposition 1. For every r ∈ R, �∼r is ampliative and non-monotonic:

• Ampliativity: for every O, if O � C � D, then O � C �∼rD;
• Non-monotonicity: it is not generally the case that, for every O, if O �

C �∼rD, then O � C � E �∼rD for every E ∈ LdALC.

The following result, of which the proof is analogous to that in the single-
ordering case [12], shows that contextual defeasible subsumption is indeed an
appropriate notion of non-monotonic subsumption:

Lemma 4. For every r ∈ R, �∼r is a preferential subsumption relation on
concepts in that the following rules (a.k.a. KLM-style postulates or properties)
hold for every ordered interpretation O, i.e., whenever O satisfies the rules’
antecedent, it satisfies the consequent as well:

(Ref) C �∼rC (LLE)
C ≡ D, C �∼rE

D �∼rE
(And)

C �∼rD, C �∼rE

C �∼rD � E

(Or)
C �∼rE, D �∼rE

C � D �∼rE
(RW)

C �∼rD, D � E

C �∼rE
(CM)

C �∼rD, C �∼rE

C � D �∼rE

We now turn to a class of ordered interpretations that are of special impor-
tance in non-monotonic reasoning, namely modular interpretations. A strict par-
tial order is called a modular order if its set-theoretic complement is a transitive
relation.

Definition 4 (Modular Interpretation). A modular interpretation is an
ordered interpretation O := 〈ΔO, ·O,�O〉, where �O

r is modular, for each r ∈ R.

We call an ordered model of a knowledge base KB which is a modular inter-
pretation a modular model of KB. It turns out that if the preference order �O

r

on the interpretation of r is modular, then the defeasible subsumption �∼r it
induces is also rational:

Lemma 5. For every r ∈ R, �∼r is a rational subsumption relation on concepts
in that every modular interpretation O satisfies the following rational mono-
tonicity property:

(RM)
C �∼rD, C ��∼r¬C ′

C � C ′ �∼rD
.

The proof of this lemma is along the lines of that for rationality in the single-
ordering case [12] and we do not provide it here.

122 K. Britz and I. Varzinczak

3.3 Modelling with Contexts

The motivation for defeasible knowledge bases is to represent defeasible knowl-
edge, and to reason over defeasible ontologies. We conclude this section with
an illustration of the different aspects of defeasibility that can be expressed in
dALC. We first consider defeasible existential restriction:

Cheninblanc � −∼−| hasAroma.Wood � ∃hasStyle.Wooded

This statement is read: “Chenin blanc wines that normally have a wood aroma
are wooded”. That is, any Chenin blanc wine that has a characteristic wood
aroma, has a wooded wine style. For an example of defeasible subsumption,
consider the statement

Cheninblanc �∼∃hasAroma.Floral

where �∼ is as in Corollary 1, which states that Chenin blanc wines usually have
some floral aroma. That is, the most typical Chenin blanc wines all have some
floral aroma. Similarly,

Cheninblanc �∼∀hasOrigin.Loire

states that Chenin blanc wines usually come only from the Loire Valley. Now
suppose we have a Chenin blanc wine x, which comes from the Loire Valley but
does not have a floral aroma, and another Chenin blanc wine y which has a floral
aroma but comes from Languedoc. No model of this ontology can simultaneously
have x ≺ y w.r.t. origin and y ≺ x w.r.t. aroma. There can therefore be no model
that accurately models reality.

This is precisely the limitation imposed by having only a single order-
ing on objects, as is broadly assumed by preferential approaches to defeasible
DLs [14,15,26,28,29], and the motivation for introducing context-based defea-
sible subsumption. Although the two defeasible statements are not inconsistent,
the presence of both rules out certain intended models. In contrast, with con-
textual defeasible subsumption, both subsumption statements can be expressed
and x and y can have incompatible preferential relationships in the same model:

Cheninblanc �∼hasAroma∃hasAroma.Floral
Cheninblanc �∼hasOrigin∀hasOrigin.Loire

Note that this knowledge base cannot be changed to:

Cheninblanc � −∼−|hasAroma.Floral
Cheninblanc � ∨∼hasOrigin.Loire

as the latter states that every Chenin blanc wine has a characteristic floral aroma
and is usually exclusive to the Loire Valley. This rules out the possibility of a
Chenin blanc without a floral aroma, or one that comes only (or just typically)
from Languedoc.

Rationality and Context in Defeasible Subsumption 123

We can also add subsumption statements indexed by different contextual
roles. For example,

Cheninblanc �∼ ∃hasAcidity.(Medium � High)
Cheninblanc �∼hasOrigin∃hasAcidity.High

states that Chenin blanc wines usually have a medium or high acidity, whereas
Chenin blanc wines of typical origin have a high acidity.

4 Entailment in dALC
Given a defeasible dALC knowledge base KB, we are interested in the reasoning
task of entailment of statements from KB. That is, given the knowledge specified
in KB, how do we decide what other subsumption statements follow from KB? In
Sect. 4.1, we first introduce the natural generalisation of entailment to a preferen-
tial setting. Thereafter we consider the additional assumption of modularity on
preferential models. This serves as motivation for our semantic characterisation
of rational entailment in Sect. 4.2.

4.1 Preferential Entailment

In order to get to a definition of entailment for dALC, an obvious starting point
is to adopt a Tarskian notion thereof:

Definition 5 (Preferential Entailment). A statement α is preferentially
entailed by a defeasible dALC knowledge base KB, written KB |=pref α, if every
ordered model of KB satisfies α.

When assessing how appropriate a notion of entailment is, a task we shall
devote time to in this section, the following definitions come in handy, as it will
become clear in the sequel:

Definition 6. A defeasible dALC knowledge base KB is called preferential if it
is closed under the preferential rules in Lemma4.

Definition 7 (Preferential Closure). Let KB be a defeasible dALC knowledge
base. With

KB∗
pref :=

⋂
{KB′ | KB ⊆ KB′ and KB′is preferential}

we denote the preferential closure of KB.

Intuitively, the preferential closure of a defeasible dALC knowledge base KB
corresponds to the ‘core’ set of statements that hold given those in KB. It pro-
vides an alternative, and, in our context, quite convenient, way to look at entail-
ment, as the following result shows:

124 K. Britz and I. Varzinczak

Lemma 6. Let KB be a defeasible dALC knowledge base and let α be a state-
ment. Then KB |=pref α iff α ∈ KB∗

pref .

Hence, preferential entailment and preferential closure are two sides of the
same coin, mimicking an analogous result for preferential reasoning in both the
propositional [31] and the DL [12,15] cases. A further feature of preferential
closure (and, therefore, of preferential entailment) is the following:

Lemma 7. KB∗
pref is preferential.

In other words, preferential entailment ensures that the set of statements
(in particular the �∼r-ones) that follow from the knowledge base satisfies the
dALC versions of the basic KLM-style properties for defeasible reasoning (cf.
Lemma 4).

Of course, preferential entailment is not always desirable, one of the reasons
being that it is monotonic, courtesy of the Tarskian notion of consequence it
relies on (see Definition 5). In most cases, as witnessed by the great deal of work
in the non-monotonic reasoning community, a move towards rationality is in
order. Thanks to the definitions above and the result in Lemma5, we already
know where to start looking for it:

Definition 8 (Modular Entailment). A statement α is modularly entailed
by a defeasible dALC knowledge base KB, written KB |=mod α, if every modular
model of KB satisfies α.

We say a defeasible dALC knowledge base KB is rational if it is closed
under the preferential rules in Lemma4 and the rational mononotonicity rule
in Lemma 5.

Definition 9 (Modular Closure). Let KB be a defeasible dALC knowledge
base. With

KB∗
mod :=

⋂
{KB′ | KB ⊆ KB′ and KB′is rational}

we denote the modular closure of KB.

Just as in the preferential case, it turns out modular closure and modular
entailment coincide:

Lemma 8. Let KB be a defeasible dALC knowledge base and let α be a state-
ment. Then KB |=mod α iff α ∈ KB∗

mod.

Unfortunately, modular closure (and modular entailment) falls short of pro-
viding us with an appropriate notion of non-monotonic entailment. This is so
because it coincides with preferential closure, as the following result, adapted
from a well-known similar result in the propositional case [33, Theorem 4.2],
shows.

Lemma 9. KB∗
mod = KB∗

pref .

More fundamentally, this means the set of �∼-statements that are modularly
entailed by a knowledge base need not satisfy the rational monotonicity property,
since KB∗

mod (or KB∗
pref) is not, in general, rational. In what follows, we overcome

precisely this issue.

Rationality and Context in Defeasible Subsumption 125

4.2 Rational Entailment

In this section, we introduce a definition of semantic entailment which, as we
shall see, is appropriate in the light of the discussion above. The constructions
we are going to present are inspired by the work by Booth and Paris [10] in the
propositional case and those by Britz et al. [12] and Giordano et al. [29,30] in
a single-ordered preferential DL setting. (We shall give a corresponding proof-
theoretic characterisation of such a notion of entailment in Sect. 4.3.)

Let KB be a defeasible knowledge base and let Δ be a fixed countably infinite
set. We define OKB

Δ := {O = 〈ΔO, ·O,�O〉 | O � KB and O is modular and
ΔO = Δ}. The following result shows that the set OKB

Δ characterises modular
entailment:

Lemma 10. For every KB, every C,D ∈ LdALC and every r ∈ R, KB |=mod

C �∼rD iff O � C �∼rD, for every O ∈ OKB
Δ .

Since Δ is countable, for every O ∈ OKB
Δ , we can partition Δ × Δ into a

sequence of layers (L0, . . . , Ln, . . .), where, for each i ≥ 0, Li := 〈Lr1
i , . . . , L

r#R

i 〉,
and such that, for every x, y ∈ Δ and every r ∈ R, (x, y) ∈ Lr

0 iff (x, y) ∈
min�r

rO and (x, y) ∈ Lr
i+1 iff (x, y) ∈ min�r

(rO \
⋃

0≤j≤i Lr
j). (That these

constructions are well defined follows from the fact that for every r ∈ R, �r is
smooth.)

Definition 10 (Height of a pair). Let O = 〈ΔO, ·O,�O〉, let x, y ∈ ΔO and
let r ∈ R. The height of (x, y) in O w.r.t. r is denoted hO(x, y, r) and is equal
to i iff (x, y) ∈ Lr

i .

We can now use the set OKB
Δ as a springboard to introduce a version of

‘canonical’ modular interpretation.

Definition 11 (Big modular interpretation). Let KB be a defeasible knowl-
edge base and define OKB

⊕ := 〈ΔOKB
⊕ , ·OKB

⊕ ,�OKB
⊕ 〉, where

• ΔOKB
⊕ :=

⊕
O∈OKB

Δ
ΔO, i.e., the disjoint union of the domains from OKB

Δ ,
where each O = 〈ΔO, ·O,�O〉 ∈ OKB

Δ has the elements x, y, . . . of its domain
renamed as xO, yO, . . . so that they are all distinct in ΔOKB

⊕ ;
• xO ∈ AOKB

⊕ iff x ∈ AO;
• (xO, yO′) ∈ rOKB

⊕ iff O = O′ and (x, y) ∈ rO;

• (xO, yO′) �OKB
⊕

r (x′
O, y′

O′) iff hO(x, y, r) < hO′(x′, y′, r).

The proofs for the two lemmas below follow from the definition of OKB
⊕ :

Lemma 11. For every C ∈ LdALC, xO ∈ COKB
⊕ iff x ∈ CO.

Lemma 12. For every r ∈ R, hOKB
⊕

(xO, yO, r) = hO(x, y, r).

These results, together with the fact that dALC modular interpretations are
closed under disjoint union (Lemma 1), allow us to show the following:

126 K. Britz and I. Varzinczak

Lemma 13. OKB
⊕ is a modular model of KB.

Given OKB
⊕ , we can then define contextual modular orderings on the

domain ΔOKB
⊕ in the same way as in Definition 3.

Armed with the definitions and results above, we are now ready to provide
an alternative definition of entailment in dALC:

Definition 12 (Rational Entailment). A statement α is rationally entailed
by a knowledge base KB, written KB |=rat α, if OKB

⊕ � α.

That such a notion of entailment indeed deserves its name is witnessed by
the following result:

Lemma 14. Let KB be a defeasible knowledge base. For every r ∈ R, {C �∼rD |
OKB

⊕ � C �∼rD} is rational.

4.3 Computing Contextual Rational Closure

In the remaining of the section, we discuss a known instance of entailment for
defeasible reasoning that meets all the requirements of rational entailment. It is
a generalisation of the DL version of the propositional rational closure studied
by Lehmann and Magidor [33], to deal with context-based rational defeasible
entailment. We present a proof-theoretic characterisation here, based on the
work of Casini and Straccia [24,25]; an alternative semantic characterisation
of rational closure in DLs (without contexts) was proposed by Giordano and
others [29,30].

Rational closure is a form of inferential closure based on modular entailment
|=mod, but it extends its inferential power. Such an extension of modular entail-
ment is obtained formalising what is called the presumption of typicality [32,
Sect. 3.1]. That is, we always assume that we are dealing with the most typi-
cal possible situation compatible with the information at our disposal. We first
define what it means for a concept to be exceptional in a given context:

Definition 13 (Contextual Exceptionality). A concept C is exceptional in
the context r in the defeasible knowledge base KB = T ∪D if KB |=mod ��∼r¬C.
A defeasible subsumption statement C �∼rD is exceptional in the context r in KB
if C is exceptional in the context r in KB.

So, a concept C is considered exceptional in a given context in a knowledge
base if it is not possible to have a modular model of the knowledge base in which
there is a typical individual (i.e., an individual at least as typical as all the oth-
ers) that is an instance of the concept C. Applying the notion of exceptionality
iteratively, we associate with every concept C and context r a rank in the knowl-
edge base KB, which we denote by rankKB(C, r). We extend this to subsumption
statements, and associate with every context r and contextual defeasible con-
cept inclusion C �∼rD a rank, denoted rankKB(C �∼rD, r) and abbreviated as
rankKB(C �∼rD):

Rationality and Context in Defeasible Subsumption 127

1. Let rankKB(C, r) = 0 if C is not exceptional in the context of r and KB, and
let rankKB(C�∼rD) = 0 for every defeasible statement having C as antecedent,
with rankKB(C, r) = 0. The set of statements in D with rank 0 is denoted as
Drank

0 .
2. Let rankKB(C, r) = 1 if C does not have a rank of 0 in the context of r

and it is not exceptional in the knowledge base KB1 composed of T and the
exceptional part of D, that is, KB1 = 〈T ,D\Drank

0 〉. If rankKB(C, r) = 1, then
let rankKB(C �∼rD) = 1 for every statement C �∼rD. The set of statements in
D with rank 1 is denoted Drank

1 .
3. In general, for i > 0, a tuple 〈C, r〉 is assigned a rank of i if it does not have

a rank of i − 1 and it is not exceptional in KBi = 〈T ,D \
⋃i−1

j=0 Drank
j 〉. If

rankKB(C, r) = i, then rankKB(C �∼rD) = i for every statement C �∼rD. The
set of statements in D with rank i is denoted Drank

i .
4. By iterating the previous steps, we eventually reach a subset E ⊆ D such that

all the statements in E are exceptional (since D is finite, we must reach such
a point). If E �= ∅, we define the rank of the statements in E as ∞, and the
set E is denoted Drank

∞ .

Following on the procedure above, D is partitioned into a finite sequence
〈Drank

0 , . . . ,Drank
n ,Drank

∞ 〉 (n ≥ 0), where Drank
∞ may possibly be empty. So, through

this procedure we can assign a rank to every context-based defeasible subsump-
tion statement.

For a concept C to have a rank of ∞ corresponds to not being satisfiable
in any model of KB, that is, KB |=mod C � ⊥. Note that this relationship is
independent of context:

Lemma 15. Let C ∈ LdALC. Then rankKB(C, r) = ∞ for all r ∈ R if and only
iff KB |=mod C � ⊥.

Adapting Lehmann and Magidor’s construction for propositional logic [33], the
contextual rational closure of a knowledge base KB is defined as follows:

Definition 14 (Contextual Rational Closure). Let C,D ∈ LdALC and let
r ∈ R. Then C�∼rD is in the rational closure of a defeasible knowledge base KB if

rankKB(C � D, r) < rankKB(C � ¬D, r) or rankKB(C) = ∞.

Informally, the above definition says that C �∼rD is in the rational closure
of KB if the ranked models of the knowledge base tell us that, in the context
of r, some instances of C � D are more plausible than all instances of C � ¬D.

Theorem 1. Let KB be a knowledge base having a modular model. For every
C,D ∈ LdALC and every r ∈ R, C �∼rD is in the rational closure of KB iff
KB |=rat C �∼rD.

128 K. Britz and I. Varzinczak

4.4 Rational Reasoning with Contextual Ontologies

The following example shows how ranks are assigned to concepts in a defeasible
TBox, and used to determine rational entailment. We first consider only a single
context hasE ∈ R with intuition ‘has employment’, and then extend the example
to demonstrate the strength of reasoning with multiple contexts.

Let KB = T ∪ D with T = {Intern � Employee, Employee � ∃hasE.�} and

D =

⎧
⎨

⎩

Employee �∼hasE∃hasID.TaxNo,
Intern �∼hasE¬∃hasID.TaxNo,

Intern � Graduate �∼hasE∃hasID.TaxNo

⎫
⎬

⎭

Examining the concepts on the LHS of each subsumption in D, we get that:

1. rankKB(Employee, hasE) = 0, since Employee is not exceptional in KB.
2. rankKB(Intern, hasE) �= 0 and rankKB(Intern � Graduate, hasE) �= 0, since both

concepts are exceptional in KB.
3. KB1 is composed of T and D \ Drank

0 , which consists of the defeasible sub-
sumptions in D except for Employee �∼hasE∃hasID.TaxNo.

4. rankKB(Intern, hasE) = 1, since Intern is not exceptional in KB1.
5. rankKB(Intern � Graduate, hasE) �= 1, since Intern � Graduate is exceptional

in KB1.
6. KB2 is composed of T and {Intern � Graduate �∼hasE∃hasID.TaxNo}.
7. Intern � Graduate is not exceptional in KB2 and therefore rankKB(Intern �

Graduate, hasE) = 2.

There are algorithms to compute rational closure [23,25,30] that can readily
be adapted to account for context, but one can also apply Definition 14 to deter-
mine rational entailment. For example, since rankKB(Intern�Graduate, hasE) = 2
but rankKB(Intern � ¬Graduate, hasE) = 1, we find that interns are usually not
graduates: KB |=rat Intern �∼hasE¬Graduate.

The context hasE is used to indicate that it is an individual’s typicality in
the context of employment which is under consideration. Now suppose that KB
in the above example is extended to KB′ = 〈T ′,D′〉, where T ′ = T and D′ =
D ∪ {Millennial �∼hasE¬Employee, Millennial �∼hasQGraduate}. The context hasQ is
used here to indicate that it is an individual’s typicality w.r.t. qualification which
is under consideration. The rankings calculated above remain unchanged; in
addition, we get rankKB′(Millennial, hasE) = 0 and rankKB′(Millennial, hasQ) = 0.
It now follows that:

• In the context hasQ, millennial interns are usually graduates: KB′ |=rat

Millennial � Intern �∼hasQGraduate. This follows because rankKB′(Millennial �
Intern�Graduate, hasQ) = 0, whereas rankKB′(Millennial� Intern� ¬Graduate,
hasQ) = 1.

• In the context hasE, millennial interns are usually not graduates: KB′ |=rat

Millennial � Intern �∼hasE¬Graduate. This follows because rankKB′(Millennial �
Intern�Graduate, hasE) = 2, whereas rankKB′(Millennial� Intern� ¬Graduate,
hasE) = 1.

Rationality and Context in Defeasible Subsumption 129

On the other hand, suppose we were restricted to a single context hasE, i.e.,
replace hasQ with hasE in KB′ to obtain KB′′. We then only get that KB′′ |=rat

Millennial � Intern �∼hasE¬Graduate.
Which one of these rational entailments is more intuitively correct depends

(sic) on the context, and can perhaps be understood better by looking at the
postulates for non-monotonic reasoning in Lemmas 4 and 5. Looking at models
of KB′, in particular OKB′

⊕ , it follows from (RM) that KB′ |=rat Millennial �
Intern �∼hasQGraduate. That is, in the context of qualifications, since millennials
are usually graduates, so are millennial interns. Also in KB′, applying (RM)
to Intern �∼hasE¬Graduate we get Intern � Millennial �∼hasE ¬Graduate. That is, in
the context of employment, since interns are usually not graduates, neither are
millennial interns.

In contrast, in models of KB′′, including the big model OKB′′
⊕ , the for-

mer deduction is blocked: Applying (RW) to Millennial �∼hasE¬Employee yields
Millennial�∼hasE¬Intern. (RM) is now blocked by Millennial�∼hasE¬Intern, hence we
cannot conclude that KB′′ |=rat Millennial � Intern �∼hasEGraduate.

5 Concluding Remarks

In this paper, we have made a case for a context-based notion of defeasible
concept inclusion in description logics. We have shown that preferential roles can
be used to take context into account, and to deliver a simple, yet powerful, notion
of contextual defeasible subsumption. Technically, this addresses an important
limitation in previous defeasible extensions of description logics, namely the
restriction in the semantics of defeasible concept inclusion to a single preference
order on objects. Semantically, it answers the question of the meaning of multiple
preference orders, namely that they reflect different contexts.

Building on previous work in the KLM tradition, we have shown that restrict-
ing the preferential semantics to a modular semantics allows us to define the
notion of rational entailment from a defeasible knowledge base, and to compute
the rational closure of a knowledge base as an instance of rational entailment.
Future work should consider the implementation of contextual rational closure,
as well as the addition of an ABox. Much work is also required on the modelling
side once a stable implementation exists. Contextual subsumption provides the
user with more flexibility in making defeasible statements in ontologies, but
comprehensive case studies are required to evaluate the approach.

Acknowledgements. This work is based on research supported in part by the
National Research Foundation of South Africa (Grant Number 103345).

130 K. Britz and I. Varzinczak

References

1. Amgoud, L., Parsons, S., Perrussel, L.: An argumentation framework based on
contextual preferences. In: Proceedings of International Conference on Formal and
Applied and Practical Reasoning (FAPR), pp. 59–67 (2000)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications, 2nd
edn. Cambridge University Press, Cambridge (2007)

3. Bikakis, A., Antoniou, G.: Defeasible contextual reasoning with arguments in ambi-
ent intelligence. IEEE Trans. Knowl. Data Eng. 22(11), 1492–1506 (2010)

4. Bonatti, P., Faella, M., Petrova, I., Sauro, L.: A new semantics for overriding in
description logics. Artif. Intell. 222, 1–48 (2015)

5. Bonatti, P., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity DLs. J.
Artif. Intell. Res. 42, 719–764 (2011)

6. Bonatti, P., Lutz, C., Wolter, F.: The complexity of circumscription in description
logic. J. Artif. Intell. Res. 35, 717–773 (2009)

7. Booth, R., Casini, G., Meyer, T., Varzinczak, I.: On the entailment problem for
a logic of typicality. In: Proceedings of 24th International Joint Conference on
Artificial Intelligence (IJCAI) (2015)

8. Booth, R., Meyer, T., Varzinczak, I.: PTL: a propositional typicality logic. In: del
Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp.
107–119. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33353-
8 9

9. Booth, R., Meyer, T., Varzinczak, I.: A propositional typicality logic for extending
rational consequence. In: Fermé, E., Gabbay, D., Simari, G. (eds.) Trends in Belief
Revision and Argumentation Dynamics. Studies in Logic - Logic and Cognitive
Systems, vol. 48, pp. 123–154. King’s College Publications, London (2013)

10. Booth, R., Paris, J.: A note on the rational closure of knowledge bases with both
positive and negative knowledge. J. Logic Lang. Inform. 7(2), 165–190 (1998)

11. Boutilier, C.: Conditional logics of normality: a modal approach. Artif. Intell.
68(1), 87–154 (1994)

12. Britz, K., Casini, G., Meyer, T., Moodley, K., Varzinczak, I.: Ordered interpre-
tations and entailment for defeasible description logics. Technical report, CAIR,
CSIR Meraka and UKZN, South Africa (2013). http://tinyurl.com/cydd6yy

13. Britz, K., Casini, G., Meyer, T., Varzinczak, I.: Preferential role restrictions. In:
Proceedings of 26th International Workshop on Description Logics, pp. 93–106
(2013)

14. Britz, K., Heidema, J., Meyer, T.: Semantic preferential subsumption. In: Lang,
J., Brewka, G. (eds.) Proceedings of 11th International Conference on Principles of
Knowledge Representation and Reasoning (KR), pp. 476–484. AAAI Press/MIT
Press (2008)

15. Britz, K., Meyer, T., Varzinczak, I.: Semantic foundation for preferential descrip-
tion logics. In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS (LNAI), vol. 7106, pp.
491–500. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25832-
9 50

16. Britz, K., Varzinczak, I.: From KLM-style conditionals to defeasible modalities,
and back. J. Appl. Non-Class. Log. (to appear)

17. Britz, K., Varzinczak, I.: Preferential accessibility and preferred worlds. J. Log.
Lang. Inf. (to appear)

https://doi.org/10.1007/978-3-642-33353-8_9
https://doi.org/10.1007/978-3-642-33353-8_9
http://tinyurl.com/cydd6yy
https://doi.org/10.1007/978-3-642-25832-9_50
https://doi.org/10.1007/978-3-642-25832-9_50

Rationality and Context in Defeasible Subsumption 131

18. Britz, K., Varzinczak, I.: Defeasible modalities. In: Proceedings of 14th Conference
on Theoretical Aspects of Rationality and Knowledge (TARK), pp. 49–60 (2013)

19. Britz, K., Varzinczak, I.: Introducing role defeasibility in description logics. In:
Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 174–189.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8 12

20. Britz, K., Varzinczak, I.: Preferential modalities revisited. In: Proceedings of 16th
International Workshop on Nonmonotonic Reasoning (NMR) (2016)

21. Britz, K., Varzinczak, I.: Context-based defeasible subsumption for dSROIQ. In:
Proceedings of 13th International Symposium on Logical Formalizations of Com-
monsense Reasoning (2017)

22. Britz, K., Varzinczak, I.: Towards defeasible dSROIQ. In: Proceedings of 30th
International Workshop on Description Logics, vol. 1879. CEUR Workshop Pro-
ceedings (2017)

23. Casini, G., Meyer, T., Moodley, K., Sattler, U., Varzinczak, I.: Introducing defea-
sibility into OWL ontologies. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS,
vol. 9367, pp. 409–426. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25010-6 27

24. Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Jan-
hunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 77–90.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15675-5 9

25. Casini, G., Straccia, U.: Defeasible inheritance-based description logics. J. Artif.
Intell. Res. (JAIR) 48, 415–473 (2013)

26. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Preferential description
logics. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol.
4790, pp. 257–272. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-75560-9 20

27. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning about typicality
in preferential description logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.)
JELIA 2008. LNCS (LNAI), vol. 5293, pp. 192–205. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87803-2 17

28. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: ALC+T : a preferential exten-
sion of description logics. Fundamenta Informaticae 96(3), 341–372 (2009)

29. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: A non-monotonic description
logic for reasoning about typicality. Artif. Intell. 195, 165–202 (2013)

30. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: Semantic characterization of
rational closure: from propositional logic to description logics. Artif. Intell. 226,
1–33 (2015)

31. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44, 167–207 (1990)

32. Lehmann, D.: Another perspective on default reasoning. Ann. Math. Artif. Intell.
15(1), 61–82 (1995)

33. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif.
Intell. 55, 1–60 (1992)

34. Pensel, M., Turhan, A.-Y.: Including quantification in defeasible reasoning for the
description logic EL⊥. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS
(LNAI), vol. 10377, pp. 78–84. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61660-5 9

35. Quantz, J., Royer, V.: A preference semantics for defaults in terminological log-
ics. In: Proceedings of 3rd International Conference on Principles of Knowledge
Representation and Reasoning (KR), pp. 294–305 (1992)

https://doi.org/10.1007/978-3-319-48758-8_12
https://doi.org/10.1007/978-3-319-25010-6_27
https://doi.org/10.1007/978-3-319-25010-6_27
https://doi.org/10.1007/978-3-642-15675-5_9
https://doi.org/10.1007/978-3-540-75560-9_20
https://doi.org/10.1007/978-3-540-75560-9_20
https://doi.org/10.1007/978-3-540-87803-2_17
https://doi.org/10.1007/978-3-319-61660-5_9
https://doi.org/10.1007/978-3-319-61660-5_9

132 K. Britz and I. Varzinczak

36. Sengupta, K., Krisnadhi, A.A., Hitzler, P.: Local closed world semantics: grounded
circumscription for OWL. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein,
A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 617–
632. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6 39

37. Shoham, Y.: Reasoning About Change: Time and Causation from the Standpoint
of Artificial Intelligence. MIT Press, Cambridge (1988)

https://doi.org/10.1007/978-3-642-25073-6_39

Haydi: Rapid Prototyping
and Combinatorial Objects

Stanislav Böhm , Jakub Beránek(B) , and Martin Šurkovský

VŠB – Technical University of Ostrava,
17. listopadu 2172/15, 708 00 Ostrava, Czech Republic

{stanislav.bohm,jakub.beranek.st,martin.surkovsky}@vsb.cz

Abstract. Haydi (http://haydi.readthedocs.io) is a framework for gen-
erating discrete structures. It provides a way to define a structure from
basic building blocks and then enumerate all elements, all non-isomorphic
elements, or generate random elements in the structure. Haydi is designed
as a tool for rapid prototyping. It is implemented as a pure Python pack-
age and supports execution in distributed environments. The goal of this
paper is to give the overall picture of Haydi together with a formal defi-
nition for the case of generating canonical forms.

Keywords: Combinatorial objects · Rapid prototyping
Canonical representation

1 Introduction

The concept of rapid prototyping helps in verifying the feasibility of an initial
idea and reject the bad ones fast. In mathematical world, there are tools like
Matlab, SageMath, or R that allow one to build a working prototype and evaluate
an idea quickly. This paper is focused on the field of combinatorial objects and
provides a prototyping tool that allows to check claims on small instances by
search over relevant objects. Haydi (Haystack Diver) is an open-source Python
package that provides an easy way of describing such structures by composing
basic building blocks (e.g. Cartesian product, mappings) and then enumerating
all elements, all non-isomorphic elements, or generating random elements.

The main design goal is to build a tool that is simple to use, since building
prototypes have to be cheap and fast. There has been an attempt to build a
flexible tool that describes various structures and reduces limitations for the
user. The reasonable performance of the solution is also important, but it has a
lower priority than the first two goals.

Authors were supported by grants of GACR 15-13784S and SGS No. SP2017/82,
VŠB – Technical University of Ostrava, Czech Republic. Computational resources
for testing on a super computer were provided by IT4Innovations as project OPEN-
8-26.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 133–149, 2018.
https://doi.org/10.1007/978-3-319-90050-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_8&domain=pdf
http://orcid.org/0000-0001-8044-7694
http://orcid.org/0000-0003-3758-2836
http://orcid.org/0000-0001-7474-123X
http://haydi.readthedocs.io

134 S. Böhm et al.

To fulfill these goals, Haydi has been built as a Python package. Python is
a well-known programming language and is commonly used as a prototyping
language that provides a high degree of flexibility. Since Haydi is written purely
in Python, it is compatible with PyPy1 – a fast Python implementation with
JIT compiler. Moreover, Haydi is designed to transparently utilize a cluster
of computers to provide a better performance without sacrificing simplicity or
flexibility. The distributed execution is built over Dask/distributed2 and it was
tested on Salomon cluster3.

The goal of this paper is to give the overall picture of Haydi together with a
formal definition for the case of generating canonical forms. More detailed and
programmer-oriented text can be found in the user guide4. Haydi is released as
an open source project at https://github.com/spirali/haydi under MIT license.

The original motivation for the tool was to investigate hard instances for
equivalence of deterministic push-down automata (DPDAs). We have released a
data set containing non-equivalent normed DPDAs [1].

The paper starts with two motivation examples in Sect. 2 followed by covering
related works in Sect. 3. Section 4 introduces the architecture of Haydi. Section 5
shows a theoretical framework for generating canonical forms. Section 6 covers a
basic usage of distributed computations and used optimizations. The last section
shows performance measurements.

2 Examples

To give an impression of how Haydi works, basic usage of Haydi is demonstrated
on two examples. The first one is a generator for directed graphs and the second
one is a generator of finite state automata for the reset word problem.

2.1 Example: Directed Graphs

In this example, our goal is to generate directed graphs with n nodes. Our first
task is to describe the structure itself: we represent a graph as a set of edges,
where an edge is a pair of two (possibly the same) nodes. For the simplicity of
outputs, we are going to generate graphs on two nodes. However, this can be
simply changed by editing a single constant, namely the number 2 on the second
line in following code:

>>> import haydi as hd
>>> nodes = hd.USet(2, "n") # A two-element set with elements {n0, n1}
>>> graphs = hd.Subsets(nodes * nodes) # Subsets of a cartesian product

The first line just imports Haydi package. The second one creates a set of
nodes, namely a set of two “unlabeled” elements. The first argument is the

1 https://pypy.org/.
2 https://github.com/dask/distributed.
3 https://docs.it4i.cz/salomon/introduction/.
4 http://haydi.readthedocs.io/.

https://github.com/spirali/haydi
https://pypy.org/
https://github.com/dask/distributed
https://docs.it4i.cz/salomon/introduction/
http://haydi.readthedocs.io/

Haydi: Rapid Prototyping and Combinatorial Objects 135

number of elements, the second one is the prefix of each element name. The
exact meaning of USet will be discussed further in the paper. For now, it just
creates a set with elements without any additional quality, the elements of this set
can be freely relabeled. In this example, it provides us with the standard graph
isomorphism. The third line constructs a collection of all graphs on two nodes,
in a mathematical notation it could be written as “graphs = P(nodes× nodes)”.

With this definition, we can now iterate all graphs:

>>> list(graphs.iterate())
[{}, {(n0, n0)}, {(n0, n0), (n0, n1)}, {(n0, n0), (n0, n1), (n1, n0)},
... 3 lines removed ...
n1)}, {(n1, n0)}, {(n1, n0), (n1, n1)}, {(n1, n1)}]

or iterate in a way in which we can see only one graph per isomorphic class:

>>> list(graphs.cnfs()) # cnfs = canonical forms
[{}, {(n0, n0)}, {(n0, n0), (n1, n1)}, {(n0, n0), (n0, n1)},
{(n0, n0), (n0, n1), (n1, n1)}, {(n0, n0), (n0, n1), (n1, n0)},
{(n0, n0), (n0, n1), (n1, n0), (n1, n1)}, {(n0, n0), (n1, n0)},
{(n0, n1)}, {(n0, n1), (n1, n0)}]

or generate random instances (3 instances in this case):

>>> list(graphs.generate(3))
[{(n1, n0)}, {(n1, n1), (n0, n0)}, {(n0, n1), (n1, n0)}]

Haydi supports standard operations such as map, filter, and reduce. The
following example shows how to define graphs without loops, i.e. graphs such
that for all edges (a, b) hold that a �= b:

>>> no_loops = graphs.filter(lambda g: all(a!=b for (a,b) in g.to_set()))

All these constructions can be transparently evaluated as a pipeline dis-
tributed across a cluster. Haydi uses Dask/distributed for distributing tasks, the
following code assumes that Dask/distributed server runs at hostname:1234:

Initialization
>>> from haydi import DistributedContext
>>> context = DistributedContext("hostname", 1234)
Run a pipeline
>>> graphs.iterate().run(ctx=context)

2.2 Example: Reset Words

A reset word is a word that sends all states of a given finite automaton to a unique
state. The following example generates automata and computes the length of
a minimal reset word. It can be used for verifying the Černý conjecture on
bounded instances. The conjecture states that the length of a minimal reset word
is bounded by (n − 1)2 where n is the number of states of the automaton [6,7].

First, we describe deterministic automata by their transition functions (a
mapping from a pair of state and symbol to a new state). In the following code,
n states is the number of states and n symbols is the size of the alphabet.
We use USet even for the alphabet, since we do not care about the meaning of
particular symbols, we just need to distinguish them.

136 S. Böhm et al.

set of states q0, q1, ..., q_{n_states-1}
>>> states = hd.USet(n_states, "q")
set of symbols a0, ..., a_{a_symbols-1}
>>> alphabet = hd.USet(n_symbols, "a")
All mappings (states * alphabet) -> states
>>> delta = hd.Mappings(states * alphabet, states)

Now we can create a pipeline that goes through all the automata of the given
size (one per an isomorphic class) and finds the maximal length among minimal
reset words:
>>> pipeline = delta.cnfs().map(check_automaton).max(size=1)
>>> result = pipeline.run()
>>> print ("The maximal length of a minimal reset word for an "
... "automaton with {} states and {} symbols is {}.".
... format(n_states, n_symbols, result[0]))

The function check automaton takes an automaton (as a transition function)
and returns the length of the minimal reset word, or 0 when there is no such a
word. It is just a simple breadth-first search on sets of states. The function is
listed in AppendixA.

3 Related Works

Many complex software frameworks are designed for rapid checking mathemat-
ical ideas, for example Maple, Matlab, SageMath. Most of them also contain a
package for combinatorial structures, e.g. Combinatorics in SageMath5, Comb-
struct in Maple6.

From the perspective of the mentioned tools, Haydi is a small single-purpose
package. But as far as we know, there is no other tool that allows building
structures by composition, searching only one structure of each isomorphism
class as well as offering simple execution in distributed environment.

Tools focused on the generation of specific structures are on the other side
of the spectrum. One example is Nauty [5] that contains Geng for generating
graphs, another ones are generators for parity games in PGSolver [3] or automata
generator for SageMath [2]. These tools provide highly optimized generators for
a given structure.

4 Architecture

Haydi is a Python package for rapid prototyping of generators for discrete struc-
tures. The main two components are domains and pipelines. The former is ded-
icated to defining structures and the latter executes an operation over domains.
In this section, both domains and pipelines are introduced. Parts that are related
to generating canonical forms are omitted. This is covered separately in Sect. 5.
5 http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/tutorial.

html.
6 https://www.maplesoft.com/support/help/Maple/view.aspx?path=combstruct.

http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/tutorial.html
http://doc.sagemath.org/html/en/reference/combinat/sage/combinat/tutorial.html
https://www.maplesoft.com/support/help/Maple/view.aspx?path=combstruct

Haydi: Rapid Prototyping and Combinatorial Objects 137

4.1 Domains

The basic structure in Haydi is a domain that represents an unordered collection
of (Python) objects. On abstract level, domains can be viewed as countable sets
with some implementation details. The basic operations with the domains are
iterations through their elements and generating a random element. Domains
are composable, i.e., more complex domains can be created from simpler ones.

There are six elementary domains: Range (a range of integers), Values (a
domain of explicitly listed Python objects), Boolean (a domain containing True
and False), and NoneDomain (a domain containing only one element: None).
Examples are shown in Fig. 1. There are also domains USet and CnfValues; their
description is postponed to Sect. 5, since it is necessary to develop a theory to
explain their purpose.

>>> import haydi as hd
>>> hd.Range(4) # Domain of four integers
<Range size=4 {0, 1, 2, 3}>
>>> hd.Values(["Haystack", "diver"])
<Values size=2 {’Haystack’, ’diver’}>

Fig. 1. Examples of elementary domains

New domains can be created by composing existing ones or applying a trans-
formation. There are the following compositions: Cartesian product, sequences,
subsets, mappings, and join. Examples are shown in Fig. 2, more details can be
found in the user guide. There are two transformations map and filter with the
standard meaning. Examples are shown in Fig. 3.

>>> import haydi as hd
>>> a = hd.Range(2)
>>> b = hd.Values(("a", "b", "c"))
>>> hd.Product((a, b)) # Cartesian product
<Product size=6 {(0, ’a’), (0, ’b’), (0, ’c’), (1, ’a’), ...}>
>>> a * b # Same as above
<Product size=6 {(0, ’a’), (0, ’b’), (0, ’c’), (1, ’a’), ...}>
>>> hd.Subsets(a) # Subsets of ’a’
<Subsets size=4 {{}, {0}, {0, 1}, {1}}>
>>> hd.Mappings(a, a) # Mappings from ’a’ to ’a’
<Mappings size=4 {{0: 0; 1: 0}, {0: 0; 1: 1}, {0: 1; 1: 0}, ...}>
>>> hd.Sequences(a, 3) # Sequences of length 3 over ’a’
<Sequences size=8 {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), ...}>
>>> hd.Join((a, b)) # Join ’a’ and ’b’, can be also written as ’a + b’
<Join size=5 {0, 1, ’a’, ’b’, ’c’}>

Fig. 2. Examples of domain compositions

138 S. Böhm et al.

>>> a = hd.Range(5)
>>> a.map(lambda x: x * 10)
<MapTransformation size=5 {0, 10, 20, 30, 40}>

Fig. 3. Examples of domain compositions

4.2 Pipeline

Domains in the previous section describe a set of elements. Pipelines provide
a way how to work with elements in these sets. Generally, a pipeline provides
methods for generating and iterating elements and optionally applying simple
“map & reduce” transformations.

The pipeline creates a stream of elements from a domain by one of the three
methods. We can apply transformations on elements in the stream. The pipeline
ends by a reducing action. The schema is shown in Fig. 4. The pipeline consists
of:

Fig. 4. The pipeline schema

Method. It specifies how to take elements from the domain into the stream.
Haydi provides three options: iterate(), generate(n), and cnfs(). Method
iterarate() iterates all elements of a given domain, generate(n) creates n
random elements of the domain (by default with the uniform distribution over
all elements), and cnfs() iterates over canonical forms (Sect. 5).

Transformations. Transformation modifies/filters elements in a stream. There
are three pipeline transformations: map(fn) – applies the function fn on each
element that goes through the pipeline, filter(fn) – filters elements in the
pipeline according to the provided function, take(count) – takes only first count
elements from the stream. The reason why transformations on domains and
in pipeline are distinguished is described in https://haydi.readthedocs.io/en/
latest/pipeline.html#transformations.

Actions. Action is a final operation on a stream of elements. For example there
are: collect() – creates a list form of the stream, reduce(fn) – applies binary
operation on elements of the stream, max() – takes maximal elements in the
stream.

https://haydi.readthedocs.io/en/latest/pipeline.html#transformations
https://haydi.readthedocs.io/en/latest/pipeline.html#transformations

Haydi: Rapid Prototyping and Combinatorial Objects 139

Run(). The previous operations declare the pipeline, which is an immutable
representation of a computational graph. The run() method actually executes
the pipeline. The optional ctx (context) parameter specifies how should the
computation be performed (serially or in a distributed way on a cluster).

The examples of pipelines are shown in Fig. 5. Not all parts of a pipeline
have to be specified, if some of them are missing, defaults are used; the default
method is iterate() and the default action is collect().

>>> domain = hd.Range(5) * hd.Range(3)
Iterate all elemenets and collect them
>>> domain.iterate().collect().run()
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0),
(2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2)]

The same as above, since iterate() and collect() is default
>>> domain.run()
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0),
(2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2)]

Generate three elements
>>> domain.generate(3).run()
[(3, 2), (4, 0), (1, 2)]
Take elements that are maximal in first component
>>> domain.max(lambda x: x[0]).run()
[(4, 0), (4, 1), (4, 2)]

Fig. 5. Examples of pipelines

5 Generating Canonical Forms

In many cases, when we want to verify a property of a discrete structure, we
are not interested in the names of the elements in the structure. For example,
in the case of graphs we usually want to see only one graph for each isomorphic
class. Another example can be finite-state automata; in many cases we are not
especially interested in names of states and actual symbols in the input alphabet.
For example, in Černý conjecture, the minimal length of reset words is not
changed when the alphabet is permuted. On the other hand, symbols in some
other problems may have special meanings and we cannot freely interchange
them.

Haydi introduces haydi.USet as a simple but expressive mechanism for
describing what permutations we are interested in. It serves to define parti-
tions of atomic objects. Each partition creates a set of atomic objects that can
be freely interchanged with one another; we call these partitions Unlabeled sets.
They then establish semantics to what structure should be preserved when iso-
morphisms on various structures are defined.

Haydi allows to iterate a domain in a way where we see only one element for
each isomorphic class. It is implemented as an iteration through canonical forms
(CNFS).

140 S. Böhm et al.

In this section, a simple theoretical framework is built. It gives a formal
background to this feature. Paragraphs starting with “Abstract:” are meant as
part of a theoretical description. Paragraphs starting with “Haydi:” describe the
implementation of the framework in Haydi.

Abstract: Let A be a set of all atomic objects whose structure is not investigated
any further. The set of objects O is the minimal set with the following properties:

– A ⊆ O (atoms)
– If oi ∈ O for i ∈ {1, 2, . . . , n} then {o1, o2, . . . , on} ∈ O (finite sets)
– If oi ∈ O for i ∈ {1, 2, . . . , n} then (o1, o2, . . . , on) ∈ O (finite sequences)

It is assumed that type of each object (atom, sequence, and set) can always be
determined. Therefore, it is assumed that sequences and sets are not contained
in atoms.

Function atoms : O → 2A that returns the atoms contained in an object is
defined as follows:

– atoms(o) = {o} if o ∈ A
– atoms(o) =

⋃
i∈{1,...,n} atoms(oi) if o = {o1, . . . , on} or o = (o1, . . . , on)

Haydi: The used Python instantiation of the definitions is the following: A con-
tains None, True, False, all instances of types int (integers) and str (strings)
and instances of the class haydi.Atom. Except for the last one, they are Python
built-in objects; the last one is related to unlabeled sets and will be explained
later. Sequences in O are identified with Python tuples, sets with haydi.Set
(analogous to standard set). Haydi also contains the type haydi.Map (analo-
gous to dict) for mappings. In the theoretical framework, mappings were not
explicitly distinguished, as they can be considered sets of pairs. For sets and
maps, standard python objects are not directly used for performance reasons7;
however, both haydi.Set and haydi.Map can be directly transformed into their
standard Python counter-parts.

Note: Generally, domains in Haydi may contain any Python object; however,
domains that support iterating over CNFS impose some restrictions that will
be shown later. Since the theoretical framework is built just for CNFS, its for-
malization to Python is mapped in a way that respects these limitations from
the beginning. For this reason, O is not identified with all Python objects. The
Python incarnation of O is called basic objects.

Now we established an isomorphism between objects. We define that two
objects are isomorphic if they can be obtained one from another by permuting
its atoms. To control permutations, partitioning of atoms is introduced and
permutation of atoms is allowed only within its “own” class. These classes are
defined through uset, that is an abbreviation of “unlabeled set”.

7 Built-in classes set and dict are optimized for lookups; however, Haydi needs fast
comparison methods as will be seen later. haydi.Set and haydi.Map are stored in a
sorted state to enable this.

Haydi: Rapid Prototyping and Combinatorial Objects 141

Abstract: Let us fix a function uset : A → 2A in the following way:

– ∀a ∈ A : a ∈ uset(a)
– ∀a, b ∈ A : uset(a) = uset(b) ∨ uset(a) ∩ uset(b) = ∅

Obviously uset partitions A into disjoint classes.
Let P be a set of all bijective functions from A to A such that for each π ∈ P

holds ∀a ∈ A : π(a) ∈ uset(a).
Applying π ∈ P to an object o ∈ O (written as oπ) is defined as follows:

– oπ = π(o) if o ∈ A
– oπ = {oπ

1 , . . . , oπ
n} if {o1, . . . , on} = o

– oπ = (oπ
1 , . . . , oπ

n) if (o1, . . . , on) = o

Let o1, o2 ∈ O then o1 and o2 are isomorphic (written as o1 ≡ o2) if there
exists π ∈ P such that o1 = oπ

2 .

Haydi: All integers, strings, None, True, and False have a singleton unlabeled
set, i.e., uset(a) = {a}. Therefore, all objects that contain only these atoms
always form their own “private” isomorphic class. For example: ("abc", 1)
cannot be isomorphic to anything else since string "abc" and integer 1 cannot
be replaced, because for each π ∈ P holds π(“abc”) = “abc” and π(1) = 1.

The only way to create a non-singleton unlabeled set is to use domain
haydi.USet (Unlabled set) that creates a set of atoms belonging to the same
unlabeled set; in other words, if X is created by haydi.USet then for each o ∈ X
holds uset(o) = X.

>>> a = hd.USet(3, "a")
>>> list(a)
[a0, a1, a2]

The first argument is the size of the set, and the second one is the name of
the set that has only informative character. The name is also used as the prefix
of element names, again without any semantical meaning. Elements of USet are
instances of haydi.Atom that is a wrapper over an integer and a reference to
the USet that contains them.

Method haydi.is isomorphic takes two objects and returns True iff the
objects are isomorphic according to our definition. Several examples are shown
in Fig. 6.

5.1 Canonical Forms

Haydi implements an iteration over canonical forms as a way to obtain exactly
one element for each isomorphic class. We define a canonical form as the smallest
element from the isomorphic class according to a fixed ordering.

Abstract: We fix a binary relation ≤ for the rest of the section such that O
is well-ordered under ≤. As usual, we write o1 < o2 if o1 ≤ o2 and o1 �= o2.
A canonical form of an object o is cf(o) = min{o′ ∈ O | o ≡ o′}. We denote
C = {o ∈ O | o = cf(o)} as a set of all canonical forms.

142 S. Böhm et al.

>>> a0, a1, a2 = hd.USet(3, "a")
>>> b0, b1 = hd.USet(2, "b")
>>> hd.is_isomorphic(a0, a2)
True
>>> hd.is_isomorphic(b1, b0)
True
>>> hd.is_isomorphic(a0, b0)
False
>>> hd.is_isomorphic((a0, b0), (a2, b1))
True
>>> hd.is_isomorphic((a0, a0), (a0, a2))
False

Fig. 6. Isomorphism examples

Haydi: Canonical forms can be generated by calling cnfs() on a domain.
Figure 7 shows simple examples of generating CNFS. In case 1, we have only
two results (a0, a0) and (a0, a1); the former represents a pair with the same
two values and the latter represents a pair of two different values. Obviously,
we cannot get one from the other by applying any permutation, and all other
elements of Cartesian product a * a can be obtained by permutations. This fact
is independent of the size of a (as it has at least two elements). In case 2, the
result is two elements, since we cannot permute elements from different usets.
The third case shows canonical forms of a power set of a, as we see there is
exactly one canonical form for each size of sets.

>>> a = hd.USet(3, "a")
>>> b = hd.USet(2, "b")
>>> list((a * a).cnfs()) # 1
[(a0, a0), (a0, a1)]
>>> list((a + b).cnfs()) # 2
[a0, b0]
>>> list(hd.Subsets(a).cnfs()) # 3
[{}, {a0}, {a0, a1}, {a0, a1, a2}]

Fig. 7. CNFS examples

Generating CNFS is limited in Haydi to strict domains that have the follow-
ing features:

1. A strict domain contains only basic objects (defined at the beginning of this
section).

2. A strict domain is closed under isomorphism.

The first limitation comes from the need of ordering. The standard com-
parison method eq is not sufficient since it may change between executions.
To ensure deterministic canonical forms8, Haydi defines haydi.compare method.
8 In Python 2, instances of different types are generally unequal, and they are ordered

consistently but arbitrarily. Switching to Python 3 does not help us, since compar-
ing incompatible types throws an error (e.g. 3 < (1, 2)), hence standard comparison
cannot serve as ordering that we need for basic objects.

Haydi: Rapid Prototyping and Combinatorial Objects 143

This method is responsible for deterministic comparison of basic objects and pro-
vides some additional properties that are explained later. The second condition
ensures that canonical forms represent all elements of a domain. Usually these
conditions do not present a practical limitation. Elementary domains except
for haydi.Values are always strict and standard compositions preserve strict-
ness. Elementary domain haydi.CnfsValues allows to define a (strict) domain
through canonical elements, hence it serves as a substitute for haydi.Values in
a case when a strict domain from explicitly listed elements is needed.

5.2 The Algorithm

This section describes implementation of the algorithm that generates canonical
forms. A näıve approach would be to iterate over all elements and filter out
non-canonical ones. Haydi avoids the näıve approach and makes the generation
of canonical forms more efficient. It constructs new elements from smaller ones
in a depth-first search manner. On each level, relevant extensions of the object
are explored, and non-canonical ones are pruned. The used approach guarantees
that all canonical forms are generated, and each will be generated exactly once,
hence the already generated elements do not need to be remembered (except the
current branch in a building tree).

This approach was already used in many applications and extracted into an
abstract framework (e.g. [4]). The main goal of this section is to show correct-
ness of the approach used in Haydi and not to give an abstract framework for
generating canonical elements, since it was done before. However, the goal is
not to generate a specific kind of structures, but provide a framework for their
describing, therefore, a rather abstract approach must still be used.

Let us note that the algorithm is not dealing here with efficiency of deciding
whether a given element is in a canonical form. In our use cases, most elements
are relatively small, hence all relevant permutations are checked during checking
the canonicity of an element. Therefore, the implementation in Haydi is quite
straightforward. It exploits some direct consequences of Proposition 1 that allow
the algorithm to reduce the set of relevant permutations and in some cases
immediately claim non-canonicity.

The used approach is based on the following two propositions. The first says
that an object cannot be canonical if it contains “gaps” in atoms occurring in
the object. The second shows that new elements can only be constructed from
existing canonical forms and still all of them are reached.

At the beginning, let us introduce some properties of the ordering given by
haydi.compare which allow the propositions to be established. On the abstract
level, the following properties for ordering ≤ are assumed where o, o′ ∈ O:

– Tuples of the same length are lexicographically ordered.
– If o = {o1, . . . , on} where o1 < · · · < on and o′ = {o′

1, . . . , o
′
n} where o′

1 <
· · · < o′

n then o ≤ o′ if (o1, . . . , on) ≤ (o′
1, . . . , o

′
n).

A set X ⊆ A contains a gap if there exists a ∈ X such that there is a′ ∈ A\X
and a′ ∈ uset↓(a) where uset↓(a) = {a′ ∈ uset(a) | a′ < a}.

144 S. Böhm et al.

Proposition 1. If o ∈ O and atoms(o) contains a gap, then o is not a canonical
form.

Proposition 1 is a direct consequence of the following claim:

Proposition 2. If o ∈ O and a′, a ∈ A such that a′ ∈ uset↓(a), a ∈
atoms(o), a′ /∈ atoms(o) and π ∈ P is a permutation that only swaps a and
a′ then oπ < o.

Proof. The proposition is proved by induction on the structure of o; let a, a′, π
be as in the statement of the proposition: If o is an atom then directly o =
a, oπ = a′ and a′ < a from assumptions. Now assume that o = (o1, . . . , on) and
the proposition holds for all oi, i ∈ {1, . . . , n}. From assumptions we get that
each oi does not contain a′ and there is the minimal index f ∈ {1, . . . , n} such
that of contains a. Hence oi = oπ

i for all i ∈ {1, . . . , f − 1} and oπ
f < o by the

induction assumption. Since tuples are lexicographically ordered it follows that
oπ < o. Similar ideas apply also for sets. �

Let us define function parent : O → O ∪ {⊥} (where ⊥ is a fresh symbol) that
gives rise to a search tree. The function returns a “smaller” object from which
the object may be constructed. The function returns ⊥ for “ground” objects
(atoms, empty tuples/sets).

parent(o) =

⎧
⎪⎨

⎪⎩

⊥ if o ∈ A ∪ {(), {}}
(o1, . . . , on) if o = (o1, . . . , on+1)
o \ {x} if o is a non-empty set and x = max o

Proposition 3. For each o ∈ O holds:

1. Exists n ∈ {1, 2, . . . } such that parentn(o) = ⊥.
2. If o is a canonical form then parent(o) is ⊥ or a canonical form.

Proof. (1) If o ∈ A then n = 1, if o is a set/tuple then n is the number of
elements in the set/tuple.

(2) Assume that there is o ∈ C and o′ = parent(o) �= ⊥ and there is π ∈ P
such that o′π < o′. Since o′ �= ⊥, o has to be a non-empty tuple or set by
definition of parent. If o is a tuple then from the lexicographic ordering of
tuples follows that oπ < o and this is a contradiction. Now we explore the
case o = {o1, . . . on+1} where oi < oj for i < j and i, j ∈ {1, . . . , n + 1}.
If there is {p1, . . . pn} = o′π such that pi < pj for i, j ∈ {1, . . . , n} then
from fact that o′π < o′ follows that there has to be f ∈ {1, . . . , n} such
that pf < of and pi = oi < pf for all i ∈ {1, . . . , f − 1}. The last step
is to explore what happens when π is applied on o; let {q1, . . . qn+1} = oπ

such that qi < qj for i, j ∈ {1, . . . , n + 1} and let k ∈ {1, . . . , n + 1} such
that qk = oπ

n+1. Since applying π on an object is bijective, k �= f . If f < k
then it follows that oi = pi = qi for i ∈ {1, . . . , f − 1} and qf = pf < of

and hence oπ < o. If k < f then oi = pi = qi for i ∈ {1, . . . , k − 1} and
qk < qk+1 = pk = ok and hence oπ < o. �

Haydi: Rapid Prototyping and Combinatorial Objects 145

Proposition 3.1 shows that parent defines a tree where: ⊥ is the root; non-
root nodes are elements from O; 3.2 shows that each canonical form can be
reached from the root by a path that contains only canonical forms. Moreover,
the elements “grow” with the distance from the root.

This serves as a basis for the algorithm generating canonical forms of ele-
ments from a domain. It recursively takes an object and tries to create a bigger
one, starting from ⊥. On each level, it checks whether the new element is canon-
ical, if not, the entire branch is terminated. The way of getting a bigger object
from a smaller one, depends on the specific domain, what type of objects are
generated and by which elements the already found elements are extended. Since
domains are composed from smaller ones, Haydi iterates the elements of a sub-
domain to gain possible “extensions” to create a new object; such extensions are
then added to the existing object to obtain a possible continuation in the tree.
Since subdomains are also strict domains, only through canonical elements of the
subdomain is iterated and new extensions are created by applying permutations
on the canonical forms. Once it is clear that the extension leads to an object
with a gap, then such a permutation is omitted. Therefore, it is not necessary
to go through all of the permutations.

Example:

>>> a = hd.USet(1000, "a")
>>> b = a * a
<Product size=1000000 {(a0, a0), (a0, a1), (a0, a2), (a0, a3), ...}>
>>> list(b.cnfs())
[(a0, a0), (a0, a1)]

The domain in variable b has one million of elements; however, only two of
them are canonical forms. Haydi starts with an empty tuple, then it asks for
canonical forms of the subdomain a that is a set containing only a0. The only
permutation on a0 that does not create a gap after adding into empty tuple is
identity, so the only relevant extension is a0. Therefore, only (a0,) is examined
as a continuation. It is a canonical form, so the generation continues. Now the
second domain from Cartesian product is used, in this particular example, again
canonical forms of a is used. At this point the only no-gap (partial) permutations
are identity and swap of a0 and a1, hence possible extensions are a0 and a1.
Extending (a0,) give us (a0, a0) and (a0, a1) as results.

The approach is similar when sets are generated. The only thing that needs
to be added for this case is a check that the extending object is bigger (w.r.t.
≤) than previous ones, to ensure that the current object is the actual parent of
the resulting object.

6 Distributed Computations

Haydi was designed to enable parallel computation on cluster machines from the
beginning. Dask/distributed9 serves as the backend for computations. The code
that uses this feature was already shown at the end of Sect. 2.1.
9 https://github.com/dask/distributed.

https://github.com/dask/distributed

146 S. Böhm et al.

Haydi contains a scheduler that dynamically interacts with Dask/distributed
scheduler. Haydi’s scheduler gradually takes elements from a pipeline and assigns
them to Dask/distributed. Haydi calculates an average execution time of recent
jobs and the job size is altered to having neither too small jobs nor too large
with respect to job time constraints.

Haydi chooses a strategy to create jobs in dependence on a chosen method of a
domain exploration. The simplest strategy is for randomly generated elements;
the stream in the pipeline induces independent jobs and the scheduler has to
care only about collecting results and adhering to a time constraint (that may
be specified in run method).

In the case of iterating over all elements, there are three supported strategies:
strategy for domains that support full slicing, for domains with filtered slicing,
and a generic strategy for domains without slicing. The last one is a fallback
strategy where Haydi scheduler itself generates elements, these elements with
the rest of the pipeline are sent as jobs into Dask/distributed.

The full slicing is supported if the number of elements in a domain is known
and an iterator over the domain that skips the first n elements can be efficiently
created. In this case, the domain may be sliced into disjunct chunks of arbitrary
sizes. Haydi scheduler simply creates lightweight disjoint tasks to workers in form
“create iterator at i steps and process m elements” without transferring explicit
elements of domains. All built-in domains support full slicing as long as the filter
is not applied.

If a domain is created by applying a filter, both properties are lost generally,
i.e., the exact number of elements, and an efficient iterator from the n-th item.
However, if the original domain supports slicing it is possible to utilize this fact.
Domains can be sliced as if there was no filter present in domain or subdomains
at all, while allowing to signalize that some elements were skipped. Note, the
filtered elements cannot be silently swallowed, because the knowledge of how
many elements were already generated in the underlying domain would be lost.
In such a case it could not be possible to ensure that the iterations go over dis-
junct chunks of a domain. The iterators that allow to signalize that one or more
elements were internally skipped are called “skip iterators”. The ability to sig-
nalize skipping more elements at once allows to implement efficient slicing when
filter domains are used in composition. For example, assume a Cartesian product
of two filtered domains, where consecutive chunks of elements are dropped when
a single element is filtered in a subdomain. This strategy usually works well in
practice for domains when elements dropped by the filter are spread across the
whole domain.

If canonical forms are generated, then the goal is to build a search tree.
One job assigned to Dask/distributed represents a computation of all direct
descendants of a node in a search tree. In the current version, it is quite a simple
way of distributed tree search and there is a space for improvements; it is the
youngest part of Haydi.

Haydi: Rapid Prototyping and Combinatorial Objects 147

7 Performance

The purpose of this section is to give a basic impression of Haydi’s performance.
For comparison the two examples from Sects. 2.1 ad 2.2 are used.

First of all, Haydi is compared with other tools. This comparison is demon-
strated on the example of generating directed graphs. Geng [5] is used as a base-
line within the comparison, since it is a state of the art generator for graphs. In
order to simulate a prototyping scenario a special version is included. This ver-
sion loads graphs generated by Geng into Python. The loading process is done
using the Networkx10 library and a small manual wrapper. Moreover, the results
of two other experiments are included. Both experiments summarize graphs gen-
erated by SageMath, in the first case SageMath uses Geng as the backend while in
the other one it uses its own graph implementation Cgraph. Haydi was executed
with Python 2.7.9 and PyPy 5.8.0. Geng 2.6r7 and SageMath 8.0 were used.
Experiments were executed on a laptop with Intel Core i7-7700HQ (2.8 GHz).
Source codes of all test scripts can be found in the Haydi’s git repository. The
results are shown in Table 1. In all cases, except the last one, the goal was to
generate all non-isomorphic graphs with the given number of vertices without
any additional computation on them. The last entry generates all possible graphs
(including isomorphic ones) and runs in parallel on 8 processes.

Table 1. Performance of generating graphs

Tool/# of vertices 5 6 7 8

Geng (without loading to Python) <0.01 s <0.01 s <0.01 s 0.01 s

Geng + manual parser <0.01 s 0.03 s 0.05 s 0.11 s

Geng + Networkx 0.27 s 0.28 s 0.28 s 0.94 s

SageMath (Geng backend) 0.17 s 0.18 s 0.26 s 2.17 s

SageMath (Cgraph backend) 0.09 s 0.55 s 6.59 s 139.76 s

Haydi canonicals (Python) 0.53 s 11.55 s Timeout Timeout

Haydi canonicals (PyPy) 0.34 s 5.46 Timeout Timeout

Haydi parallel iterate() (PyPy) 3.27 s 3.49 s 70.99 s Timeout

Timeout is 200 s

It is obvious that Haydi cannot compete with Geng in generating graphs.
Geng is hand-tuned for this specific use case, in contrast to Haydi that is a
generic tool. On the other hand, the Haydi program that generates graphs can
be simply extended or modified to generate different custom structures while
modifying Geng would be more complicated.

The second benchmark shows strong scaling of parallel execution of the reset
word generator from Sect. 2.2 for six vertices and two alphabet characters for
variants where cnfs() was replaced by iterate(), since the parallelization of
10 https://networkx.github.io/.

https://networkx.github.io/

148 S. Böhm et al.

cnfs() is not fully optimized, yet. The iterated domain supports the full slicing
mode. The experiment was executed on the Salomon cluster (Table 2).

Table 2. Performance of iterate() on Salomon

Nodes (24 CPUs/node) Time Strong scaling

1 3424 s 1

2 1908 s 0.897

4 974 s 0.879

8 499 s 0.858

The last note on performance: we have experimented with several concepts
of the tool. The first version was a tool named Qit11, that shares similar ideas in
API design with Haydi. It also has Python API, but generates C++ code behind
the scene that is compiled and executed. Benchmarks on prototypes showed it
was around 3.5 times faster than pure Python version (executed in PyPy); how-
ever, due to C++ layer, Qit was less flexible than the current version Haydi and
hard to debug for the end user. Therefore, this version was abandoned in favor of
the pure-python version to obtain a more flexible environment for experiments
and prototyping. As the problems encountered in generation of combinatorial
objects are often exponential, 3.5× speedup does not compensate inflexibility.

A Function check automaton

from haydi.algorithms import search
Let us precompute some values that will be repeatedly used
init_state = frozenset(states)
max_steps = (n_states**3 - n_states) / 6
Known result is that we do not need more than (n^3 - n) / 6 steps
def check_automaton(delta):

This function takes automaton as a transition function and
returns the minimal length of reset word or 0 if there
is no such word
def step(state, depth):

A step in bread-first search; gives a set of states
and return a set reachable by one step
for a in alphabet:

yield frozenset(delta[(s, a)] for s in state)
delta = delta.to_dict()
return search.bfs(

init_state, # Initial state
step, # Function that takes a node and

returns the followers
lambda state, depth: depth if len(state) == 1 else None,
Run until we reach a single state
max_depth=max_steps, # Limit depth of search
not_found_value=0) # Return 0 when we exceed

depth limit

11 https://github.com/spirali/qit.

https://github.com/spirali/qit

Haydi: Rapid Prototyping and Combinatorial Objects 149

References

1. Böhm, S., Beránek, J., Šurkovský, M.: NDPDA - data set. Technical report, VŠB -
Technical University of Ostrava, Czech Republic (2017). http://verif.cs.vsb.cz/sb/
data/ndpda pairs-2017-12.pdf

2. Heuberger, C., Krenn, D., Kropf, S.: Automata in SageMath - combinatorics meet
theoretical computer science. Discret. Math. Theoret. Comput. Sci. 18(3) (2016).
http://dmtcs.episciences.org/1475

3. Lange, M., Friedmann, O.: The PGSolver collection of parity game solvers. Technical
report, Ludwig-Maximilians-Universität-München (2009)

4. McKay, B.D.: Isomorph-free exhaustive generation. J. Algorithms 26(2), 306–324
(1998). https://doi.org/10.1006/jagm.1997.0898

5. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb.
Comput. 60, 94–112 (2014). http://www.sciencedirect.com/science/article/pii/
S0747717113001193

6. Černý, J.: Poznámka k. homogénnym experimentom s konečnými automatmi. Mat.
Fyz. Cas SAV 14, 208–215 (1964)

7. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4 4

http://verif.cs.vsb.cz/sb/data/ndpda_pairs-2017-12.pdf
http://verif.cs.vsb.cz/sb/data/ndpda_pairs-2017-12.pdf
http://dmtcs.episciences.org/1475
https://doi.org/10.1006/jagm.1997.0898
http://www.sciencedirect.com/science/article/pii/S0747717113001193
http://www.sciencedirect.com/science/article/pii/S0747717113001193
https://doi.org/10.1007/978-3-540-88282-4_4

Argumentation Frameworks
with Recursive Attacks and
Evidence-Based Supports

Claudette Cayrol, Jorge Fandinno(B), Luis Fariñas del Cerro,
and Marie-Christine Lagasquie-Schiex

IRIT, Université de Toulouse, CNRS, Toulouse, France
{ccayrol,jorge.fandinno,luis,lagasq}@irit.fr

Abstract. The purpose of this work is to study a generalisation of
Dung’s abstract argumentation frameworks that allows representing pos-
itive interactions (called supports). The notion of support studied here is
based in the intuition that every argument must be supported by some
chain of supports from some special arguments called prima-facie. The
theory developed also allows the representation of both recursive attacks
and supports, that is, a class of attacks or supports whose targets are
other attacks or supports. We do this by developing a theory of argu-
mentation where the classic role of attacks in defeating arguments is
replaced by a subset of them, which is extension dependent and which,
intuitively, represents a set of “valid attacks” with respect to the exten-
sion. Similarly, only the subset of “valid supports” is allowed to support
other elements (arguments, attacks or supports). This theory displays
a conservative generalisation of Dung’s semantics (complete, preferred
and stable) and also of their principles (conflict-freeness, acceptability
and admissibility). When restricted to finite non-recursive frameworks,
we are also able to prove a one-to-one correspondence with Evidence-
Based Argumentation (EBA). When supports are ignored a one-to-one
correspondence with Argumentation Frameworks with Recursive Attacks
(AFRA) semantics is also established.

1 Introduction

Argumentation has become an essential paradigm for knowledge representation
and, especially, for reasoning from contradictory information [2,18] and for for-
malizing the exchange of arguments between agents in, e.g., negotiation [3].
Formal abstract frameworks have greatly eased the modelling and study of argu-
mentation. For instance, a Dung’s argumentation framework (AF) [18] consists
of a collection of arguments interacting through an attack relation, enabling to
determine “acceptable” sets of arguments called extensions.

J. Fandinno—The second author is funded by the Centre International de
Mathématiques et d’Informatique de Toulouse (CIMI) through contract ANR-11-
LABEX-0040-CIMI within the program ANR-11-IDEX-0002-02.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 150–169, 2018.
https://doi.org/10.1007/978-3-319-90050-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_9&domain=pdf

Argumentation Frameworks with Recursive Attacks 151

Two natural generalisations of Dung’s argumentation frameworks consist
in allowing positive interactions (usually expressed by a support relation) and
allowing high-order attacks (that target other attacks or supports). These gen-
eralisations are not only for the “pleasure” to develop more complex concepts;
they mainly allow the representation of richer argumentation problems. Here is
an example in the legal field, borrowed from [4].

Example 1. The prosecutor says that the defendant has intention to kill the vic-
tim (argument b). A witness says that she saw the defendant throwing a sharp
knife towards the victim (argument a). Argument a can be considered as a sup-
port for argument b. The lawyer argues back that the defendant was in a habit
of throwing the knife at his wife’s foot once drunk. This latter argument (argu-
ment c) is better considered attacking the support from a to b, than arguments
a or b themselves. Now the prosecutor’s argumentation seems no longer suffi-
cient for proving the intention to kill. This example is represented as a recursive
framework in Fig. 1. ��

Fig. 1. An acyclic recursive framework where supports (resp. attacks) are represented
by double (resp. simple) arrows ended with a white (resp. black) triangle. Circles with
solid border represent prima-facie arguments while dashed border ones represent stan-
dard arguments.

Positive interaction between arguments has been first introduced in [20,31].
In [13], the support relation is left general so that the bipolar framework keeps a
high level of abstraction. The associated semantics are based on the combination
of the attack relation with the support relation which results in new complex
attack relations. However, there is no single interpretation of the support, and
a number of researchers proposed specialized variants of the support relation
(deductive support [7], necessary support [25,26], evidential support [27,28]).
Each specialization can be associated with an appropriate modelling using an
appropriate complex attack. These proposals have been developed quite inde-
pendently, based on different intuitions and with different formalizations. [14]
presents a comparative study in order to restate these proposals in a common
setting, the bipolar argumentation framework (see also [15] for another survey).

We follow here an evidential understanding of the support relation [27] that
allows to distinguish between two different kinds of arguments: prima-facie and
standard arguments. Prima-facie arguments were already present in [31] as those
that are justified whenever they are not defeated. On the other hand, standard
arguments are not directly assumed to be justified and must inherit support from

152 C. Cayrol et al.

prima-facie arguments through a chain of supports. For instance, in Example 1,
arguments a and c are considered as prima-facie arguments while b is regarded
as a standard argument. Hence, while a and c can be accepted as in Dung’s
argumentation, b must inherit support from a: this holds if c is not accepted,
but does not otherwise. Indeed, in the latter, the support from a to b is defeated
by c.

Concerning frameworks with interactions between arguments and other inter-
actions, a first version has been introduced in [21], then studied in [5] under the
name of AFRA (Argumentation Framework with Recursive Attacks). This ver-
sion describes abstract argumentation frameworks in which the interactions can
be either attacks between arguments or attacks from an argument to another
attack. In this case, as for the bipolar case, a translation of an AFRA into
an equivalent AF can be defined by the addition of some new arguments and
the attacks they produce or they receive. A generalization of AFRA has been
proposed in [16] in order to take into account supports on arguments or on
interactions. These frameworks are called ASAF (Attack-Support Argumenta-
tion Frameworks). As for an AFRA, a translation of an ASAF into an equivalent
AF is proposed by the addition of arguments and attacks. More recently, alterna-
tive acceptability semantics have been defined in a direct way for argumentation
frameworks with recursive attacks [10,11].

In this paper, we are interested in a framework with high-order attacks and
supports, with an evidential understanding of these supports. So, we apply the
notion of prima-facie, not only to arguments, but also to interactions (attacks
and supports). The intuition is that prima-facie elements (arguments, attack
or supports) are elements that do not have to be supported. More precisely,
we study a semantics for argumentation frameworks with recursive attacks and
evidential supports, based on the following intuitive principles:

P1 The role played in Dung’s argumentation frameworks by attacks in defeat-
ing arguments is now played by a subset of these attacks, which is exten-
sion dependent and represents the “valid attacks” with respect to that
extension.

P2 The notion of acceptability for prima-facie (and supported) arguments
(resp. attacks or supports) is as in recursive frameworks without supports.

P3 Non-prima-facie arguments (resp. attacks or supports) can only be
“accepted” (resp. be “valid”) if there is a chain of “valid supports” rooted
in some prima-facie arguments. These “valid supports” are also extension
dependent.

P4 It is a conservative generalisation of Dung’s framework for the notions of
conflict-free, admissible, complete, preferred, and stable extensions.

The paper is organized as follows: the necessary background is given in Sect. 2;
new semantics for recursive and evidence-based frameworks are proposed in
Sect. 3; a comparison with existing frameworks is given in Sects. 4, 5 and 6; and
we conclude in Sect. 7. Proofs of formal results can be found in [12].

Argumentation Frameworks with Recursive Attacks 153

2 Background

We next give preliminaries about the works the paper is based on. We first
review some basic background about Dung’s abstract argumentation frame-
works [18], the recursive framework of [11] and Evidence-Based Argumentation
(EBA) frameworks [27,30].

2.1 Dung’s Argumentation

Definition 1 (D-framework). A Dung’s abstract argumentation framework
(d-framework for short) is a pair dAF = 〈A,R〉 where A is a set of arguments
and R ⊆ A×A is a relation representing attacks over arguments. ��
Definition 2 (Defeated/acceptable argument). Let dAF = 〈A,R〉 be a
d-framework and E ⊆ A, an argument a ∈ A is said to be:
1. defeated w.r.t. E iff ∃b ∈ E such that (b, a) ∈ R, and
2. acceptable w.r.t. E iff for every argument b ∈ A with (b, a) ∈ R, there is

c ∈ E such that (c, b) ∈ R. ��
To obtain shorter definitions we will also use the following notations:

Def (E) def= { a ∈ A
∣
∣ ∃b ∈ E s.t. (b, a) ∈ R }

Acc(E) def= { a ∈ A
∣
∣ ∀b ∈ A, (b, a)∈R implies b∈Def (E) }

respectively denote the set of all defeated and acceptable arguments w.r.t. E.

Definition 3 (Semantics). Given a d-framework dAF = 〈A,R〉, a set of argu-
ments E ⊆ A is said to be:
1. conflict-free iff E ∩ Def (E) = ∅,
2. admissible iff it is conflict-free and E ⊆ Acc(E),
3. complete iff it is conflict-free and E = Acc(E),
4. preferred iff it is ⊆-maximal admissible,
5. stable iff it is conflict-free and E ∪ Def (E) = A. ��
Theorem 1 (From [18]). Given a d-framework dAF = 〈A,R〉, the following
assertions hold:
1. every complete set is also admissible,
2. every preferred set is also complete, and
3. every stable set is also preferred. ��

Example 2. Consider the d-framework corresponding to Fig. 2. The argument
a is accepted w.r.t. any set E because there is no argument x ∈ A such that
(x, a) ∈ R. Furthermore, b is defeated and non-acceptable w.r.t. the set {a}.
Then, it is easy to check that {a} is stable (and, thus, conflict-free, admissible,
complete and preferred). The empty set ∅ is admissible, but not complete; and
the set {b} is conflict-free, but not admissible.

154 C. Cayrol et al.

Fig. 2. A d-framework

2.2 Recursive Argumentation

Let us here recall the necessary background from [11], where high-order attacks
are called “recursive”.

Definition 4 (RAF). A recursive argumentation framework (RAF) is a tuple
〈A,K, s, t〉 where A is a set of arguments, K is a set disjunct from A, repre-
senting attack names, s is a function from K to A, mapping each interaction to
its source, t is a function from K to (A ∪ K) mapping each interaction to its
target.

Acceptability semantics are defined by replacing the notion of extension (set
of arguments) by a pair of a set of arguments and a set of attacks, called a
“structure”. The intuition is the fact that two arguments may be conflicting
depends on the validity of the attack between them. So it would not be sound
to give a definition of a set of arguments being conflict-free, independently of a
set of attacks. More generally, the classic role of attacks in defeating arguments
is played by a subset of attacks, which is extension dependent, and represents
the valid attacks with respect to the extension.

Definition 5 (Structure). A structure on 〈A, K, s, t〉 is a pair U = (S, Γ)
such that S ⊆ A and Γ ⊆ K. ��

Intuitively, S represents the set of arguments that are accepted w.r.t. the
structure U while Γ represents the set of attacks that are valid w.r.t. U .

Definition 6 (Defeat/Inhibition/Acceptability). Given U = (S, Γ) a
structure on 〈A, K, s, t〉. Let a ∈ A and α ∈ K.
1. a is defeated wrt (S, Γ) iff ∃β ∈ Γ such that s(β) ∈ S and t(β) = a,
2. α is inhibited wrt (S, Γ) iff ∃β ∈ Γ such that s(β) ∈ S and t(β) = α.
Def(U) (resp. Inh(U)) will denote the set of arguments (resp. attacks) that are
defeated (resp. inhibited) wrt the structure U .
3. a is acceptable wrt U iff ∀β ∈ K such that t(β) = a, either β ∈ Inh(U) or

s(β) ∈ Def(U).
4. α is acceptable wrt U iff ∀β ∈ K such that t(β) = α, either β ∈ Inh(U) or

s(β) ∈ Def(U).
Acc(U) will denote the set of all acceptable arguments and attacks wrt U . ��

Then, semantics are defined as follows:

Definition 7 (Semantics). A structure U = (S, Γ) on 〈A, K, s, t〉 is:
1. conflict-free iff S ∩ Def(U) = ∅ and Γ ∩ Inh(U) = ∅;

Argumentation Frameworks with Recursive Attacks 155

2. admissible iff it is conflict-free and ∀x ∈ (S ∪ Γ), x is acceptable wrt U ;
3. complete iff it is conflict-free and Acc(U) = S ∪ Γ ;
4. stable iff it is conflict-free and satisfies:

(a) ∀a ∈ A \ S, a ∈ Def(U) and
(b) ∀α ∈ K \ Γ , α ∈ Inh(U);

5. preferred iff it is a ⊆-maximal1 admissible structure. ��
It has been proved in [11] that every complete structure is admissible, every
preferred structure is also complete and every stable structure is also preferred.

2.3 Evidence-Based Argumentation

We recall the formal definition of EBA frameworks. We follow here the definitions
from [30] which correct some technical flaws from [27].

Definition 8 (Evidence-Based Argumentation framework). An Evid-
ence-Based Argumentation framework (EBAF) is a tuple EBAF = 〈A,Ra,Re〉
where A represents a set of arguments, Ra ⊆ (2A\∅) × A is an attack relation
and Re ⊆ (2A\∅) × A is a support relation. A special argument η ∈ A is dis-
tinguished satisfying that there is no (B, η) ∈ Ra ∪ Re for any set B nor there
is (B, a) ∈ Ra with η ∈ B. We say that EBAF is (in)finite iff A is (in)finite. ��

The special argument η serves as a representation of the prima-facie argu-
ments. Note that the attack relation is not a binary relation. Instead, there can
be an attack from a set of arguments to another argument, something which is
not the case in d-frameworks.

Definition 9 (Evidential Support). An argument a ∈ A is e-supported by
a set B ⊆ A iff the two following conditions hold:
1. a = η, or
2. there is a non-empty C ⊆ B s.t. (C, a) ∈ Re and every c ∈ C is e-supported

by B\{a}. ��
B is said to be a minimal e-support for a iff there is no C ⊂ B such that a is
e-supported by C. ��

Note that η is e-supported by any set B ⊆ A.

Definition 10 (Evidence-Supported Attack). A pair (B, a) is said to be
an evidence-supported attack (e-attack) iff (i) there is (C, a) ∈ Ra with C ⊆ B
and (ii) all elements in C are e-supported by B. (B, a) is said to be a minimal
e-attack if there is no e-attack (C, a) with C ⊂ B. ��

We will say that B e-supports a or that (B, a) is an e-support when a is
e-supported by B and that B e-attacks a when (B, a) is an e-attack.

1 Where U = (S, Γ) ⊆ U ′ = (S′, Γ ′) iff (S ∪ Γ) ⊆ (S′ ∪ Γ ′).

156 C. Cayrol et al.

Definition 11 (Acceptability). Given some framework EBAF= 〈A,Ra,Re〉,
an argument a ∈ A is said to be acceptable w.r.t. a set E ⊆ A iff the following
two conditions are satisfied:
1. a is e-supported by E, and
2. for every minimal e-attack (B, a), it holds that E e-attacks some b ∈ B. ��
Definition 12 (Semantics). A set of arguments E ⊆ A is said to be
1. self-supporting iff all arguments a ∈ E are e-supported by E,
2. conflict-free iff, for every a ∈ E, there is no B ⊆ E such that (B, a) ∈ Ra,
3. admissible iff it is conflict-free and all arguments a ∈ E are acceptable

w.r.t. E,
4. complete iff it is admissible and all acceptable arguments w.r.t. E are in E,
5. preferred iff it is a ⊆-maximal admissible set,
6. stable iff it is self-supporting, conflict-free and any argument a /∈ E which

is e-supported by A satisfies that E e-attacks either a or every minimal
e-support B of a. ��

3 Recursive Evidence-Based Argumentation

In this section, we extend the semantics proposed for recursive attacks in [11]
with the purpose of handling evidence-based supports.

3.1 Recursive Evidence-Based Argumentation Frameworks

Definition 13 (Recursive Evidence-Based Argumentation Frame-
work). An (evidence-based recursive) argumentation framework AF= 〈A,K,S,
s,t,P〉 is a sextuple where A, K and S are three (possible infinite) pairwise dis-
junct sets respectively representing arguments, attacks and supports names, and
where P ⊆ A∪K∪ S is a set representing the prima-facie elements that do not
need to be supported. Functions s : (K∪S) −→ 2A and t : (K∪S) −→ (A∪K∪S)
respectively map each attack and support to its source and its target. ��

As in EBAFs, the source of attacks and supports is a set of arguments. It is
obvious that any attack (a, b) in a d-framework can be represented by assigning
to it some name α that satisfies s(α) = {a} and t(α) = b. It is also worth
mentioning that, from an evidential point of view, every argument and attack
of a d-framework is prima-facie. That is, given some dAF= 〈A,R〉, we can build
a corresponding recursive framework AF = 〈A,K,S,s,t,P〉 where K is a set of
names of the same cardinality of R, where S = ∅ is the empty set of supports,
s and t map each attack name to its corresponding source and target, and the
set of prima-facie elements P = A ∪ K includes all arguments and attacks.

Example 3. In particular, the d-framework associated with Fig. 2 corresponds to
the AF = 〈A,K,S,s,t,P〉 with A = {a, b}, K = {α}, s(α) = {a}, t(α) = b and
P = {a, b, α}. ��

Argumentation Frameworks with Recursive Attacks 157

Fig. 3. An AF with named attack.

Note also that, different from EBAFs, the set P may contain several prima-
facie elements (arguments, attacks and supports). This is not a substantial dif-
ference, but allows that any graph representing a d-framework has the same
semantics when interpreted in our framework. For instance, Fig. 3 depicts the
framework of Fig. 2 making explicit the attack name. Note that we use squares
in the middle of the arrows to represent attack and support names. As with
arguments, a solid border denotes prima-facie elements while a dashed border
denotes standard elements. By following this notation every graph within Dung’s
theory preserves the same semantics, something which is in accordance with prin-
ciple P4. Note also that, in contrast with EBAFs, we do not assume any con-
straint on the prima-facie elements, they can be attacked or supported (though
supporting prima-facie elements do not make any semantical difference from not
doing so).

Example 4. As an illustration of frameworks with recursive attacks and sup-
ports, consider the argumentation frameworks AF1 = 〈A1,K1,S1, s1, t1,P1〉
and AF2 = 〈A2,K2,S2, s2, t2,P2〉 where A1 = {a, b, c}, K1 = {β}, S1 = {α},
A2 = {a, b, c, d}, K2 = {α, β}, S2 = {γ, δ}, functions s1, t1, s2 and t2 satisfy

s1(α) = {a}
s1(β) = {c}

t1(α) = b

t1(β) = α

s2(α) = {a}
s2(β) = {a}

t2(α) = b

t2(β) = b

s2(γ) = {c}
s2(δ) = {d}

t2(γ) = α

t2(δ) = β

and P1 = {a, c, α, β}, and P2 = {a, b, c, d, γ, δ}. These two frameworks can
be respectively depicted as the graphs in Figs. 4a and b. It is worth to note
that Fig. 4a is just the result of naming attacks and supports in Fig. 1. On the
other hand, Fig. 4b represents a framework with two attacks between a and
b that hold in different contexts: α and β are two standard attacks that are
respectively supported by different prima-facie arguments, c and d respectively,
that represent those different contexts. ��

Example 5. Consider the following four arguments:2

(a) “The Bible says that God is all good”,

2 This example is a slight variation of the one discussed in [24]. Having at our disposal
supports allows us to explicitly represent the implicit support in “The Bible says
that God is all good, so God is all good” which was there expressed as a single
argument.

158 C. Cayrol et al.

Fig. 4. Recursive frameworks with prima-facie elements

(b) “God is all good”,
(c) “The Bible was written by human beings”,
(d) “Human beings are not infallible”.
Argument (a) may be considered as a support α for argument (b), while (c)
and (d) taken together may be considered as an attack β to the support α.
Indeed, arguments (c) and (d), alone or together, contradict neither (a) nor
(b). Moreover, (c) alone (resp. (d) alone) does not attack α. We must take
(c) and (d) together in order to attack α. This example can be formalised as
AF3 = 〈A3,K3,S3, s3, t3,P3〉 where A3 = {a, b, c, d}, K3 = {β}, S3 = {α}, and
P3 = A3\{b} = {a, c, d}.

s3(α) = {a}
s3(β) = {c, d}

t3(α) = b

t3(β) = α

��
It is worth to mention that the reason to use explicit names for attacks and
supports in Definition 13 instead of just relations is twofold. First, this allows
the existence of several attacks or supports between the same elements that can
be used to represent different contexts as illustrated in Example 4. The second
reason is due to the possible existence of cycles of attacks or supports, which
has no trivial finite representation as a relation: for instance, attack α in Fig. 5
would correspond to the infinite object ({a}, ({b}, ({c}, ({a}, . . .)))).

Fig. 5. A cyclic recursive framework

Argumentation Frameworks with Recursive Attacks 159

3.2 Semantics of Recursive Evidence-Based Argumentation
Frameworks

We generalize next the notion of structure introduced in [11], which will allow
us to characterise which arguments are regarded as “acceptable,” and which
attacks and supports are regarded as “valid,” with respect to some argumentation
framework. The notion of structure is analogous to the notion of set of arguments
and it will be the basis of defining the corresponding argumentation semantics
for recursive frameworks.

Definition 14 (Structure). A triple A = 〈E,Γ,Δ〉 is said to be a structure
of some AF= 〈A,K,S,s,t,P〉 iff it satisfies: E ⊆ A, Γ ⊆ K and Δ ⊆ S. ��

Intuitively, the set E represents the set of “acceptable” arguments w.r.t. the
structure A, while Γ and Δ respectively represent the set of “valid attacks” and
“valid supports” w.r.t. A. Any attack3 α ∈ Γ is understood as non-valid and,
in this sense, it cannot defeat the element that it is targeting. Similarly, any
support β ∈ Δ is understood as non-valid and it cannot support the element
that it is targeting.

For the rest of this section we assume that all definitions and results are
relative to some given framework AF= 〈A,K,S,s,t,P〉. We extend now the defi-
nition of defeated arguments (Definition 2) using the set Γ instead of the attack
relation R: given a structure of the form A = 〈E,Γ,Δ〉, we define:

Def X(A) def= { x∈X
∣
∣ ∃α ∈ Γ, s(α)⊆E and t(α)=x } (1)

with X ∈ {A,K,S}. In other words, an element x is defeated w.r.t. A iff there is
a “valid attack” w.r.t. A that targets x and whose source is “acceptable” w.r.t. A.
It is interesting to observe that we may define the attack relation associated with
some structure A = 〈E,Γ,Δ〉 as follows:

RA
def= { (s(α), t(α))

∣
∣ α ∈ Γ } (2)

and that, using this relation, we can rewrite (1) as:

Def X(A) def= { x ∈ X
∣
∣ ∃B ⊆ E s.t. (B, x) ∈ RA } (3)

Now, it is easy to see that our definition for Def A(A) can be obtained from
Dung’s definition of defeat (Definition 2) just by replacing the attack relation R
by the attack relation RA associated with the structure A and ∃b ∈ E by ∃B ⊆
E, or in other words, by replacing the set of all attacks in the argumentation
framework by the set of the “valid attacks” w.r.t. the structure A, as stated
in P1; and allowing the source of attacks to be, not just arguments, but sets of
them.

3 By Γ def= K\Γ we denote the set complement of Γ w.r.t. K. Similarly, by Δ def= S\Δ
we denote the set complement of Δ w.r.t. S.

160 C. Cayrol et al.

By Def (A) def= Def A(A) ∪ Def K(A) ∪ Def S(A), we will denote the set of
all defeated arguments. By Def X(A) def= X\Def X(A) with X ∈ {A,K,S}, we
denote the non-defeated arguments (resp. attacks, supports) w.r.t. A. Further-
more, by Def (A) def= (A ∪ K ∪ S)\Def (A), we denote the set of all non-defeated
elements.

Example 4 (cont’d). Consider the framework corresponding to Fig. 4a, and the
structure A = 〈E,Γ,Δ〉 with E = {a, c}, Γ = {β} and Δ = ∅. Then, we have
that Def (A) = {α}. ��

Let us now introduce the notion of supported elements w.r.t. a structure.
Intuitively, it should be noted that the prima-facie elements (arguments, attacks,
supports) of a given framework are supported for any structure. Then, a stan-
dard element is supported if there exists a chain of supported supports, leading
to it, which is rooted in prima-facie arguments. Formally, given some frame-
work AF= 〈A,K,S,s,t,P〉 and some structure A = 〈E,Γ,Δ〉, the set of supported
elements Sup(A) is recursively defined as follows4:

Sup(A) def= P ∪ { t(α)
∣
∣ ∃α∈Δ∩Sup(A′) , s(α) ⊆ E ∩ Sup(A′) } (4)

with5 A′ = A\{t(α)}. By SupX(A) def= Sup(A) ∩ X with X ∈ {A,K,S}, we
respectively denote the set of all supported arguments, attacks and supports.

Example 4 (cont’d). Consider the framework corresponding to Fig. 4a, and the
structure A = 〈E,Γ,Δ〉 with E = {a, b, c}, Γ = ∅ and Δ = {α}. Let us prove
that b ∈ Sup(A). Note that b = t(α) with α ∈ Δ. So we have to prove that α
and a ∈ s(α) = {a} both belong to Sup(A\{b}). That is true since α and a both
belong to P.

Fig. 6. A recursive framework with prima-facie elements

Example 6. As a further example, consider the framework corresponding to
the graph depicted in Fig. 6 and let A = 〈E,Γ,Δ〉 be a structure with
E = {a, b, c, d, e}, Γ = ∅ and Δ = {α, γ, δ}. Then, we have that Sup(A) =
4 Note that E = ∅ and Δ = ∅ act as base cases, because E = ∅ (resp. Δ = ∅)

implies Sup(A) = P.
5 By abuse of notation, we write A\T instead of 〈E\T, Γ\T, Δ\T 〉 with T ⊆ (A∪K∪
S).

Argumentation Frameworks with Recursive Attacks 161

{a, b, c, d, e, α, β, γ, δ}. Note that a, c, e, α, β and δ are supported because they
are prima-facie elements. It is also easy to see that b is supported as in the pre-
vious example and that γ is supported through δ by e. So, b and γ both belong
to Sup(A\{d}). Hence, d is also supported. ��

Now, drawing on the notion of supported elements w.r.t. a given structure A,
we are able to define the supportable elements w.r.t. A. Intuitively, an element is
considered as being still supportable as long as there exists some non-defeated
support with all its source elements non-defeated and regarded, in its turn, as
supportable. Formally, an element x is supportable w.r.t. A iff x is supported
w.r.t. A′ = 〈Def A(A), K, Def S(A)〉. Elements that are defeated or that are
unsupportable cannot be accepted. In this sense, by UnAcc(A) def= Def (A) ∪
Sup(A′) we denote the unacceptable elements w.r.t. A. Moreover, we say that an
attack α ∈ K is unactivable6 iff either it is unacceptable or some element in its
source is unacceptable, that is,

UnAct(A) def= { α ∈ K
∣
∣ α ∈ UnAcc(A) or s(α) ∩ UnAcc(A) �= ∅ }

Definition 15 (Acceptability). An element x ∈ A ∪ K ∪ S is said to be
acceptable w.r.t. a structure A iff (i) x ∈ Sup(A) and (ii) every attack α ∈ K
with t(α) = x is unactivable, that is, α ∈ UnAct(A). ��

By Acc(A), we denote the set containing all arguments, attacks and supports
that are acceptable with respect to A.

It is worth to note that, intuitively, an element is acceptable iff it is supported
and, in addition, every attack against it can be considered as unactivable because
either some argument in its source or itself has been regarded as unacceptable.

Fig. 7. Argumentation framework corresponding to Example 7.

Example 7. Consider the argumentation framework of Fig. 7, and the structure
A = 〈{a, b, c, e}, {α, κ, γ}, ∅〉. We have that c is acceptable w.r.t. A. Note that
there are two attacks against c: β is defeated through α by a, while γ is unac-
tivable because d is unsupportable since δ is defeated by κ. ��
6 Intuitively, such an attack cannot be “activated” in order to defeat the element that

it is targeting.

162 C. Cayrol et al.

We also define the following order relations that will help us defining preferred
structures: for any pair of structures A = 〈E,Γ,Δ〉 and A′ = 〈E′, Γ ′,Δ′〉, we
write A � A′ iff (E ∪ Γ ∪ Δ) ⊆ (E′ ∪ Γ ′ ∪ Δ′). As usual, we say that a structure
A is �-maximal iff every A′ that satisfies A � A′ also satisfies A′ � A.

Definition 16. A structure A = 〈E,Γ,Δ〉 is said to be:
1. self-supporting iff (E ∪ Γ ∪ Δ) ⊆ Sup(A),
2. conflict-free iff X∩Def Y (A)=∅ for any (X,Y) ∈ {(E,A), (Γ,K), (Δ,S)},
3. admissible iff it is conflict-free and E ∪ Γ ∪ Δ ⊆ Acc(A),
4. complete iff it is conflict-free and Acc(A) = E ∪ Γ ∪ Δ,
5. preferred iff it is a �-maximal admissible structure,
6. stable7 iff (E ∪ Γ ∪ Δ) = UnAcc(A). ��
Example 4 (cont’d). The framework of Fig. 4a has a unique complete, preferred
and stable structure A = 〈{a, c}, {β}, ∅〉. Note that α cannot be accepted
because it is defeated by c through β, while b cannot be accepted because, now,
it lacks support.

Example 6 (cont’d). The framework of Fig. 6 has also a unique complete, pre-
ferred and stable structure A = 〈{a, c, e}, {β}, {γ, δ}〉. As above, α cannot be
accepted because it is defeated by c through β which implies that b and d can-
not be accepted because of lack of support. γ is acceptable because it is supported
through δ by e and not attacked. ��
Example 7 (cont’d). A = 〈{a, b, c, e}, {α, κ, γ}, ∅〉 is the unique complete, pre-
ferred and stable structure w.r.t. the framework of Fig. 7. ��

We show now that, as in Dung’s argumentation theory, there is also a kind of
Fundamental Lemma for argumentation frameworks with recursive attacks and
evidence-based supports. Intuitively, this lemma says that elements of an admis-
sible structure continue to be acceptable when the structure is “reasonably”
extended, that is extended with an acceptable element.

Lemma 1 (Fundamental Lemma). Let A = 〈E,Γ,Δ〉 be an admissible struc-
ture and x, y ∈ Acc(A) be any pair of acceptable elements. Then,8 (i) A′ = A∪{x}
is an admissible structure, and (ii) y ∈ Acc(A′). ��
Moreover, admissible structures form a complete partial order with preferred
structures as maximal elements:

Proposition 1. The set of all admissible structures forms a complete partial
order with respect to �. Furthermore, for every admissible structure A, there
exists a preferred one A′ such that A � A′. ��
The following result shows that the usual relation between extensions also holds
for structures.
7 Note also this already implies conflict-freeness.
8 By abuse of notation, we write A∪T instead of 〈E∪(T ∩A), Γ ∪(T ∩K), Δ∪(T ∩S)〉

with T ⊆ (A ∪ K ∪ S).

Argumentation Frameworks with Recursive Attacks 163

Theorem 2. The following assertions hold:
1. every admissible structure is also self-supporting,
2. every complete structure is also admissible,
3. every preferred structure is also complete, and
4. every stable structure is also preferred. ��

Fig. 8. A cyclic recursive framework

Example 8. As a further example, consider the framework corresponding to
Fig. 8. This framework has a unique complete and preferred structure A =
〈{a}, {β}, ∅〉, but no stable one. Note that α and b are neither acceptable nor
unacceptable w.r.t. A: α is not unacceptable because it is supportable (it is
prima-facie) and it is not defeated (b is not in the structure) and it is not accept-
able because it is attacked by b, which is still not unacceptable. Similarly, b is not
unacceptable because it is still supportable through α, but it is not supported
(and, thus not acceptable) because α is not in the structure. ��

4 Relation with Recursive Argumentation Frameworks

As mentioned in Sect. 3, our framework is a conservative generalisation of the
Recursive Argumentation Framework (RAF) defined in [11] with the addition of
supports and joint attacks. RAF’s attacks are similar to Dung’s attacks with the
only difference that they may target, not only arguments, but also other attacks.
Hence, translating RAF’s (or Dung’s) attacks into joint attacks is trivial: every
attack with source a is replaced by an attack with the singleton set {a} as its
source. On the other hand, like Dung’s frameworks, RAFs do not encompass the
notion of support. From an evidential point of view it is as every argument or
attack was externally supported, or in other words, as attacks and arguments
were prima-facie. In this sense, every RAF = 〈A,K,s,t〉 can be translated into
a corresponding recursive evidence-based argumentation framework of the form
AF= 〈A,K,S,s′,t,P〉 with S = ∅ (no supports), where every element is consid-
ered as prima-facie, that is P = A∪K, and where s′ satisfies s′(α) = {s(α)} for
every attack α ∈ K. It is easy to check that a structure 〈E,Γ 〉 is conflict-free
(resp. admissible, complete, preferred, stable) w.r.t. some RAF iff 〈E,Γ, ∅〉 is
conflict-free (resp. admissible, complete, preferred, stable) w.r.t. its correspond-
ing AF. Furthermore, there is a one-to-one correspondence between complete,
preferred and stable structures in RAF’s and their corresponding Dung’s exten-
sions, so this correspondence is also carried over to our argumentation frame-
works with evidence-based support. In [11], it also has been shown that there is
a one-to-one correspondence between RAF and AFRA [5], which is also carried

164 C. Cayrol et al.

over to our frameworks (when we restrict ourselves to frameworks without sup-
ports). Note that AFRA has been extended with supports in [16,17] and called
Attack-Support Argumentation Framework (ASAF). However, ASAF supports
are understood as necessary conditions for their targets instead. This is quite dif-
ferent from the evidential understanding followed here as shown by the following
example.

Fig. 9. A framework with a cycle of supports

Example 9. According to ASAF, the set {a, b, α, β} is a complete, preferred and
stable w.r.t. the framework of Fig. 9. On the other hand, in our framework,
〈{a, b}, ∅, {α, β}〉 is not admissible (and, thus, not complete, preferred nor sta-
ble) because neither a nor b are supported by a chain rooted in some prima-facie
argument. ��

5 Relation with Dung’s Argumentation Frameworks

It is also worth to mention that the one-to-one correspondence between RAF
(or either AFRA or ASAF) and Dung’s frameworks is not directly applicable to
conflict-free or admissible sets as illustrated by the following example:

Example 2 (cont’d). Consider the argumentation framework corresponding
to Fig. 3. According to Dung’s theory, this framework has three conflict-free
sets, namely ∅, {a} and {b}, which respectively correspond to the structures:
〈∅, {α}, ∅〉, 〈{a}, {α}, ∅〉 and 〈{b}, {α}, ∅〉. On the other hand, 〈{a, b}, ∅, ∅〉 is
a conflict-free structure because the attack α is not considered valid. Similarly,
{a, b} is a conflict-free set according to AFRA or ASAF. ��

The difference between Dung’s argumentation frameworks and these three
semantics for recursive attacks, illustrated by the above example, can be
explained by the fact that, in Dung’s theory, every attack is considered as “valid”
in the sense that it may affect its target. In [11], it has been shown that a one-
to-one correspondence with Dung’s theory, for conflict-free and admissible sets,
can be recovered by adding a kind of reinstatement principle on attacks, which
forces all attacks that cannot be defeated to be “valid”. The following extends
the definition of d-structure from [11] to the case of supports by strengthening
the notion of structure according to the above intuition:

Definition 17 (D-structure). Given some framework AF= 〈A,K,S,s,t,P〉, a
structure A = 〈E,Γ,Δ〉 is said to be a d-structure iff it satisfies (Acc(A)∩K) ⊆

Argumentation Frameworks with Recursive Attacks 165

Γ and (Acc(A) ∩ S) ⊆ Δ. Then, a conflict-free (resp. admissible, complete,
preferred or stable) d-structure is a conflict-free (resp. admissible, complete,
preferred, stable) structure which is also a d-structure. ��

As a direct consequence of Definition 16 and Theorem 2, we have:

Observation 1. Every complete (resp. preferred or stable) structure is also a
d-structure. ��

It is easy to check that a structure 〈E,Γ 〉 is a d-structure w.r.t. some RAF (as
defined in [11]) iff 〈E,Γ, ∅〉 is a d-structure w.r.t. its corresponding AF. Hence,
the following result is an immediate consequence of Theorem in [11]:

Theorem 3. Let AF = 〈A,K,S,s,t,P〉 be some non-recursive framework with
S = ∅, P = A ∪ K, and that satisfies |s(α)| = 1 and t(α) ∈ A, for all α ∈ K.
Then, a d-structure A = 〈E,K, ∅〉 is conflict-free (resp. admissible, complete,
preferred or stable) w.r.t. AF (Definition 17) iff it is conflict-free (resp. admis-
sible, complete, preferred or stable) w.r.t. dAF = 〈A,RAF〉 (Definition 3) with
the relation RAF

def= { (a, t(α))
∣
∣ α ∈ K and s(α) = {a} }. ��

Theorem 3 formalises how any d-framework can be represented as an AF:
in particular, in these frameworks, all elements are prima-facie P = A ∪ K (so
supports are not needed S = ∅). Furthermore, an attack only targets arguments,
t(α) ∈ A for all α ∈ K, and the source is a single argument, represented by the
restriction to singleton sets |s(α)| = 1.

6 Relation with Evidence-Based Argumentation
Frameworks

As mentioned in the introduction, (non-recursive) EBAFs were first introduced
in [27]. When we are restricted to non-recursive frameworks, the major difference
between EBAFs and our frameworks comes from the way in which the notion of
acceptability is defined. In both cases, every acceptable argument must also be
supported but while, in EBAFs, acceptability relies on what is called evidence-
supported attack (e-attack for short), in our theory, it relies on the idea that argu-
ments are unacceptable if they cannot be supported or are defeated. Intuitively,
an e-attack is a pair (B, a) where B groups together the arguments necessary to
attack a and all the arguments necessary to support all those arguments. Then,
acceptability is defined requiring defence against e-attacks instead of standard
attacks. In this sense, an EBAF can be understood as a (possibly exponential in
size) Dung’s framework in which arguments are self-supporting sets and attacks
are the e-attacks [28].

Let us start by defining the non-recursive framework that corresponds to
some EBAF with finite set of arguments.

166 C. Cayrol et al.

Definition 18. Given an EBAF = 〈A,Ra,Re〉, by AFEBAF = 〈A,K,S,s,t,P〉 we
denote the argumentation framework where K and S are two (disjunct) sets with
the same cardinality as Ra and Re, respectively; P = K∪S∪{η} and functions
s and t map each attack and support name to their corresponding source and
target,9 that is, they satisfy:

Ra = { (s(α), t(α))
∣
∣ α ∈ K }

Re = { (s(β), t(β))
∣
∣ β ∈ S }

Given a set E ⊆ A, by AE
def= 〈E,K,S〉 we denote its corresponding structure.

��
Observation 2. Since there are no attacks against other attacks or supports,
every d-structure w.r.t. some AFEBAF is of the form AE for some set of argu-
ments E ⊆ A. ��

In order to establish the existence of a one-to-one correspondence between
finite EBAFs and non-recursive argumentation frameworks in our theory, let us
define structEBAF(·) as the function mapping any set of arguments E into the
structure AE = 〈E,K,S〉.
Theorem 4. Let EBAF be some finite EBA framework. Then, the function
structEBAF(·) is a one-to-one correspondence between its self-supporting (resp.
conflict-free, admissible, complete, preferred or stable) sets according to Defini-
tion 12 and the self-supporting (resp. conflict-free, admissible, complete, preferred
or stable) d-structures of its corresponding framework AFEBAF. ��

The above result holds for the finite case. That immediately rises the question
whether this correspondence can be generalised to non-finite frameworks. The
following example answers this question in a negative way.

Example 10. Let EBAF = 〈A,Ra,Re〉 be some EBAF with a set of arguments
A = {η, a, b, c1, c2 . . . }, a set of attacks Ra = {({a}, b)} and a set of supports

Re = {({η}, b)} ∪ {({η}, c1), ({η}, c2), . . . }
∪ {({c1, c2, . . . , }, a), ({c2, . . . }, a), . . . }

Let E = A\{a} be a set of arguments. It is easy to see that every argument is
supported according to Definition 9 and, thus, that a and all ci are acceptable
because there is no attack against them. This implies that b is not acceptable
because it is attacked by a which is supported and not defeated and, thus, that
E is not admissible. On the other hand, according to Definition 11, argument b
is also acceptable w.r.t. E. Just note that, for every e-attack (C, b) against b,
the set C must include a and infinitely many ci’s and thus, there is always some
e-attack (C ′, b) against b with C ′ = C\{ci} and ci ∈ C. Hence, there is no
minimal e-attack against b, which immediately implies that b is acceptable and
that E is admissible. ��
9 In other words, for a given (C, a) ∈ Ra, if α denotes the associated name in K, we

have s(α) = C and t(α) = a.

Argumentation Frameworks with Recursive Attacks 167

It is worth to note that Example 10 can be also used to show that some
usual results of abstract argumentation framework are not satisfied for non-
finite EBAFs. In particular, the following example illustrates that neither the
Fundamental Lemma nor the usual relations between semantics are satisfied:

Example 10 (cont’d). Note that a is acceptable w.r.t. the admissible set E, but
E ∪ {a} is not conflict-free (and, thus, not admissible) because a attacks b. This
is a counterexample to the Fundamental Lemma. Furthermore, this also implies
that E is a preferred set, though it is not a complete one, so the usual relations
among semantics are not satisfied. ��

7 Conclusion

In this work we have extended Dung’s abstract argumentation framework with
recursive attacks and supports. One of the essential characteristics of this exten-
sion is that semantics are given with respect to the notion of “valid attacks
and supports” which respectively play a role analogous to attacks in Dung’s
frameworks and supports in Evidence-Based Argumentation (EBA). The bases
for this extension were first settled in [11], where semantics for frameworks
with recursive attacks without supports were studied. The notions of “grounded
attack/support” and “valid attack/support” have been introduced in [9] and
encoded through a two-step translation into a meta-argumentation framework.10

In the first step, a meta-argument is associated to an attack, and a support rela-
tion is added from the source of the attack to the meta-argument. In the second
step, a support relation is encoded by the addition of a new meta-argument
and new attacks. So [9] uses a method for flattening a recursive framework. As a
consequence, extensions contain different kinds of argument. In contrast, we pro-
pose a theory where valid attacks remain explicit, and distinct from arguments,
within the notion of structure.

It is worth mentioning that this extension is a conservative extension with
respect to Dung’s approach (when d-structures are considered) and that we have
proved a one-to-one correspondence with finite EBA frameworks. We have also
shown that non-finite EBA frameworks do not satisfy the Fundamental Lemma
nor the usual relations among semantics. In this sense, our approach is an alterna-
tive semantics for non-finite frameworks with evidence-based supports that sat-
isfies these properties. In addition, with restricted frameworks without supports,
we inherit, from [11], a one-to-one correspondence with AFRA-extensions [5] in
the case of the complete, preferred and stable semantics.

For a better understanding of the recursive frameworks, future work should
include the study of other semantics (stage, semi-stable, grounded and ideal),
extending our approach by taking into account other bipolar interactions [16,32],

10 Note that meta-argumentation frameworks have been often used for flattening
complex argumentation frameworks (such as bipolar or recursive ones, see for
instance [5,9,16]). More generally, meta-level argumentation is concerned with using
arguments to reason over arguments (see for instance [22,23]).

168 C. Cayrol et al.

and enriching the translation proposed by [6,8,19,29] from Dung’s framework
into propositional logic and ASP, in order to capture RAF. This is the best way
for encoding these frameworks (either directly, or by a flattening process) in
order to obtain efficient practical implementations that could be tested in the
ICCMA competition (see [1]).

References

1. ICCMA competition. http://argumentationcompetition.org/2017/
2. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable

arguments. Ann. Math. Artif. Intell. 34, 197–216 (2002)
3. Amgoud, L., Maudet, N., Parsons, S.: Modelling dialogues using argumentation.

In: Proceedings of ICMAS, pp. 31–38 (2000)
4. Arisaka, R., Satoh, K.: Voluntary manslaughter? a case study with meta-

argumentation with supports. In: Kurahashi, S., Ohta, Y., Arai, S., Satoh, K.,
Bekki, D. (eds.) JSAI-isAI 2016. LNCS (LNAI), vol. 10247, pp. 241–252. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-61572-1 16

5. Baroni, P., Cerutti, F., Giacomin, M., Guida, G.: AFRA: argumentation framework
with recursive attacks. Int. J. Approx. Reason. 52(1), 19–37 (2011)

6. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In:
Delgrande, J.P., Schaub, T. (eds.) Proceedings of NMR, pp. 59–64 (2004)

7. Boella, G., Gabbay, D.M., van der Torre, L., Villata, S.: Support in abstract argu-
mentation. In: Proceedings of COMMA, Frontiers in Artificial Intelligence and
Applications, vol. 216, pp. 111–122. IOS Press (2010)

8. Carballido, J.L., Nieves, J.C., Osorio, M.: Inferring preferred extensions by pstable
semantics. Intel. Artif.: Revista Iberoam. de Intel. Artif. 13(41), 38–53 (2009)

9. Cayrol, C., Cohen, A., Lagasquie-Schiex, M.-C.: Towards a new framework
for recursive interactions in abstract bipolar argumentation. In: Proceedings of
COMMA, Frontiers in Artificial Intelligence and Applications, vol. 287, pp. 191–
198. IOS Press (2016)

10. Cayrol, C., Fandinno, J., Fariñas del Cerro, L., Lagasquie-Schiex, M.-C.: Valid
attacks in argumentation frameworks with recursive attacks. Technical report
IRIT/RR-2017-16-FR, IRIT (2017)

11. Cayrol, C., Fandinno, J., Fariñas del Cerro, L., Lagasquie-Schiex, M.-C.: Valid
attacks in argumentation frameworks with recursive attacks. In: Proceedings of
Commonsense reasoning, CEUR workshop, vol. 2052 (2017)

12. Cayrol, C., Fandinno, J., Fariñas del Cerro, L., Lagasquie-Schiex, M.-C.: Argumen-
tation frameworks with recursive attacks and evidence-based supports. Technical
report IRIT/RR-2018-01-FR, IRIT (2018)

13. Cayrol, C., Lagasquie-Schiex, M.-C.: On the acceptability of arguments in bipolar
argumentation frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI),
vol. 3571, pp. 378–389. Springer, Heidelberg (2005). https://doi.org/10.1007/
11518655 33

14. Cayrol, C., Lagasquie-Schiex, M.-C.: Bipolarity in argumentation graphs: towards
a better understanding. Int. J. Approx. Reason. 54(7), 876–899 (2013)

15. Cohen, A., Gottifredi, S., Garcia, A.J., Simari, G.R.: A survey of different
approaches to support in argumentation systems. Knowl. Eng. Rev. 29, 513–550
(2014)

http://argumentationcompetition.org/2017/
https://doi.org/10.1007/978-3-319-61572-1_16
https://doi.org/10.1007/11518655_33
https://doi.org/10.1007/11518655_33

Argumentation Frameworks with Recursive Attacks 169

16. Cohen, A., Gottifredi, S., Garćıa, A.J., Simari, G.R.: An approach to abstract
argumentation with recursive attack and support. J. Appl. Log. 13(4), 509–533
(2015)

17. Cohen, A., Gottifredi, S., Garćıa, A.J., Simari, G.R.: On the acceptability seman-
tics of argumentation frameworks with recursive attack and support. In: Proceed-
ings of COMMA, Frontiers in Artificial Intelligence and Applications, vol. 287, pp.
231–242. IOS Press (2016)

18. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

19. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argu-
mentation frameworks. Argum. Comput. 1(2), 147–177 (2010)

20. Karacapilidis, N.I., Papadias, D.: Computer supported argumentation and collab-
orative decision making: the HERMES system. Inf. Syst. 26(4), 259–277 (2001)

21. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. Intell.
173(9–10), 901–934 (2009)

22. Modgil, S., Bench-Capon, T.J.M.: Metalevel argumentation. J. Log. Comput.
21(6), 959–1003 (2011)

23. Müller, J., Hunter, A., Taylor, P.: Meta-level argumentation with argument
schemes. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS
(LNAI), vol. 8078, pp. 92–105. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40381-1 8

24. Nielsen, S.H., Parsons, S.: A generalization of Dung’s abstract framework for argu-
mentation: arguing with sets of attacking arguments. In: Maudet, N., Parsons, S.,
Rahwan, I. (eds.) ArgMAS 2006. LNCS (LNAI), vol. 4766, pp. 54–73. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75526-5 4

25. Nouioua, F., Risch, V.: Bipolar argumentation frameworks with specialized sup-
ports. In: Proceedings of ICTAI, pp. 215–218. IEEE Computer Society (2010)

26. Nouioua, F., Risch, V.: Argumentation frameworks with necessities. In: Benferhat,
S., Grant, J. (eds.) SUM 2011. LNCS (LNAI), vol. 6929, pp. 163–176. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23963-2 14

27. Oren, N., Norman, T.J.: Semantics for evidence-based argumentation. In: Besnard,
P., Doutre, S., Hunter, A. (eds.) Proceedings of COMMA, Frontiers in Artificial
Intelligence and Applications, vol. 172, pp. 276–284. IOS Press (2008)

28. Oren, N., Reed, C., Luck, M.: Moving between argumentation frameworks. In:
Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.) Proceedings of COMMA,
Frontiers in Artificial Intelligence and Applications, vol. 216, pp. 379–390. IOS
Press (2010)

29. Osorio, M., Nieves, J.C., Santoyo, A.: Complete extensions as Clark’s completion
semantics. In: Proceedings of MICCS, pp. 81–88 (2013)

30. Polberg, S., Oren, N.: Revisiting support in abstract argumentation systems. In:
Parsons, S., Oren, N., Reed, C., Cerutti, F. (eds.) Proceedings of COMMA, Fron-
tiers in Artificial Intelligence and Applications, vol. 266, pp. 369–376. IOS Press
(2014)

31. Verheij, B.: Deflog: on the logical interpretation of prima facie justified assump-
tions. J. Log. Comput. 13(3), 319–346 (2003)

32. Villata, S., Boella, G., Gabbay, D.M., van der Torre, L.: Modelling defeasible and
prioritized support in bipolar argumentation. Ann. Math. Artif. Intell. 66(1–4),
163–197 (2012)

https://doi.org/10.1007/978-3-642-40381-1_8
https://doi.org/10.1007/978-3-642-40381-1_8
https://doi.org/10.1007/978-3-540-75526-5_4
https://doi.org/10.1007/978-3-642-23963-2_14

A Decidable Multi-agent Logic
with Iterations of Upper and Lower

Probability Operators

Dragan Doder1, Nenad Savić2(B), and Zoran Ognjanović3

1 Université Paul Sabatier – CNRS, IRIT, 118 Route de Narbonne,
31062 Toulouse CEDEX 9, France

dragan.doder@irit.fr
2 Institute of Computer Science, University of Bern, Neubrueckstrasse 10,

3012 Bern, Switzerland
savic@inf.unibe.ch

3 Mathematical Institute of Serbian Academy of Sciences and Arts,
Kneza Mihaila 36, 11000 Belgrade, Serbia

zorano@mi.sanu.ac.rs

Abstract. We present a propositional logic for reasoning about higher-
order upper and lower probabilities. The main technical result is the
proof of decidability of the introduced logical system. We also show that
the axiomatization for the corresponding logic without iterations of oper-
ators, which we developed in our previous work, is also complete for the
new class of models presented in this paper.

Keywords: Probabilistic logic · Upper and lower probabilities
Decidability · Completeness theorem

1 Introduction

In the last few decades, uncertain reasoning has become an active topic of inves-
tigation for researchers in the fields of computer science, artificial intelligence
and cognitive science. One particular line of research concerns the formalization
in terms of logic. The frameworks designed for reasoning about uncertainty often
use probability-based interpretation of knowledge or belief. In the first of those
papers [28] motivated by development of an expert system in medicine, Nilsson
tried to give a logic with probabilistic operators as a well-founded framework
for uncertain reasoning. The question of providing an axiomatization and deci-
sion procedure for Nilsson’s logic attracted the attention of other researchers
in the field, and triggered investigation about formal systems for probabilistic
reasoning [6–9,11,16,25,29–32].

However, in many applications, sharp numerical probabilities appear too sim-
ple for modeling uncertainty. In order to model some situations of interest, var-
ious imprecise probability models are developed [4,5,23,26,35–37,39]. Some of
c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 170–185, 2018.
https://doi.org/10.1007/978-3-319-90050-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_10&domain=pdf

Multi-agent Logic with Iterations of Upper and Lower Probability Operators 171

those approaches use sets of probability measures instead of one fixed measure,
and the uncertainty is represented by two boundaries, called lower probabil-
ity and upper probability [14,22]. Halpern and Pucella [13] give the following
example: a bag contains 100 marbles, 30 of them are red and the remaining
70 are either blue or yellow, but we do not know their exact proportion. Obvi-
ously, we can assign exact probability 0.3 to the event that a randomly picked
ball from the bag is red. On the other hand, for each possible probability p
for picking a blue ball, we know that the remaining probability for yellow one
is 0.7-p. This way we obtain a set of possible probability measures P . Based
on P we can define the following two functions: the upper probability and the
lower probability measure, which assign to an event X the supremum (resp. the
infimum) of the probabilities assigned to X by the measures in P . Formally, if
the uncertainty about probabilities is modeled by a set P of probability mea-
sures defined on given algebra H, then the lower probability measure P� and the
upper probability measure P � are defined by P�(X) = inf{μ(X) | μ ∈ P} and
P �(X) = sup{μ(X) | μ ∈ P}, for every X ∈ H. Those two functions are related
by the formula P�(X) = 1 − P �(Xc).

Those probability notions were previously formalized in the logic developed
in [13], where lower and upper probability operators are applied to propositional
formulas, and in [33], where first-order logic is considered (a formula is a Boolean
combination of formulas in which lower and upper probability operators are
applied to first-order sentences).

In this paper, we use the papers [13,33] as a starting point and generalize
them in a way that we reason not only about lower and upper probabilities an
agent assigns to a certain event, but also about her uncertain belief about other
agent’s imprecise probabilities. Thus, we introduce separate lower and upper
probability operators for different agents, and we allow nesting of the operators,
similarly as it has been done in [7], in the case of simple probabilities1. Our
preliminary research on the topic is published in [34], where we axiomatized a
first-order logic with nesting of lower and upper probability operators. However,
since that logic extends standard first-order logic, it is obviously undecidable.
To overcome that problem, in this paper we present a propositional variant of
this logic, which we denote by ILUPP2; we prove that the logic is decidable and
we propose a sound and strongly complete axiomatization for the logic.

Our language contains the upper and lower probability operators Ua
≥r and

La
≥r, for every agent a and every rational number r from the unit interval (we

also introduce the operators with other types of inequalities, like Ua
=r). Consider

the following example, essentially taken from [34]. Suppose that an agent a is
planning to visit a city based on the weather reports from several sources, and
she decides to take an action if the probability of rain is at most 1

10 , according
to all reports she considers. Since she wishes to go together with b, she should

1 For a discussion on higher-order probabilities we refer the reader to [10].
2 The notation is motivated by the logic LUPP from [34], where LUP stands for “lower
and upper probability”, while the second P indicates that the logic is propositional.
We add I to denote iteration of upper and lower operators.

172 D. Doder et al.

be sure with probability at least 9
10 that b (who might consult different weather

reports) has the same conclusion about the possibility of rain. In our language,
this situation can be formalized as

Ua
≤ 1

10
Rain ∧ La

≥ 9
10

(U b
≤ 1

10
Rain),

where Rain is a primitive proposition of the corresponding language. The appro-
priate modal semantics consists of a specific class of Kripke models, in which
every world is equipped with sets of probability measures (one set for each agent).

Our main technical result is that the satisfiability problem for ILUPP logic is
decidable. In the proof, we combine the method of filtration [15] and a reduction
to linear programming. In the first part of the proof, we show that a formula α is
satisfiable in a world w of an ILUPP model if and only if it is satisfiable in a finite
model, i.e., a model with a finite number of worlds, bounded by a number which
is a function of the length of α, and such that the sets of probabilitiy measures
are finite in every world of the model. Note that, while in a standard modal
framework this is enough to prove decidability, since for every natural number
k there are only finitely many modal models with k worlds, this is not the case
for our logic. Indeed, since our models involve sets of probability measures, for
every finite set of k worlds, there are uncountably many probability measures
defined on them, and uncountably many models with k worlds. However, in the
second part of the proof we use a reduction to linear programming to solve the
probabilistic satisfiability in a finite number of steps.

We also propose a sound and strongly complete axiomatization of the logic.
Interestingly, we use the same axiomatization that we used in [33] for the logic
LUPP, and we show that it is also complete for the richer logic ILUPP. Of course,
the instances of the axiom schemata are different, because the sets of formulas
of ILUPP is larger, due to nesting of lower and upper probability operators,
and due to the presence of more agents. Also, the definition of the syntactical
consequence (proof) � is different, due to the different interpretation of classical
formulas. Since the class of formulas and the class of models are different, the
proof techniques are modified. In order to achieve completeness, we use a Henkin-
like construction, following some of our earlier developed methods [17,19,20,29,
32,33].

The interesting situation that one axiomatic system is sound and complete
for more than one class of models is not an exception. For example, modal system
K is also sound and complete with respect to the class of all irreflexive models
[15].

The paper is organized as follows: in Sect. 2 we introduce the set of formulas
of the logic ILUPP and we define the corresponding semantics. Then, in Sect. 3 we
prove that the satisfiability problem for the logic ILUPP is decidable. In Sect. 4 we
provide an axiomatic system for the logic, and we prove that the axiomatization
is strongly complete. Finally, Sect. 5 contains some concluding remarks.

2 The Logic ILUPP

In this section we introduce the syntax and the semantics of the logic ILUPP.

Multi-agent Logic with Iterations of Upper and Lower Probability Operators 173

2.1 Syntax

Let Σ = {a, b, . . . } be a finite, non-empty set of agents. Let S = Q ∩ [0, 1] and
let L = {p, q, r, . . . } be a denumerable set of propositional letters. The language
of the logic ILUPP consists of:

– the elements of set L,
– classical propositional connectives ¬ and ∧,
– the list of upper probability operators Ua

≥s, for every a ∈ Σ and every s ∈ S,
– the list of lower probability operators La

≥s, for every a ∈ Σ and every s ∈ S.

Definition 1 (Formula). The set ForILUPP of formulas is the smallest set con-
taining all elements of L and that is closed under following formation rules: if
α, β are formulas, then La

≥sα, Ua
≥sα, ¬α and α ∧ β are formulas as well. The

formulas from ForILUPP will be denoted by α, β, . . .

Intuitively, Ua
≥sα means that according to an agent a, upper probability that

a formula α is true is greater or equal to s and analoguosly La
≥sα means that

according to an agent a lower probability that a formula α is true is greater or
equal to s.

Note that we use conjunction and negation as primitive connectives, while
∨, → and ↔ are introduced in the usual way. We also use abbreviations to
introduce other types of inequalities:

– Ua
<sα is ¬Ua

≥sα, Ua
≤sα is La

≥1−s¬α, Ua
=sα is Ua

≤sα ∧ Ua
≥sα, Ua

>sα is ¬Ua
≤sα,

– La
<sα is ¬La

≥sα, La
≤sα is Ua

≥1−s¬α, La
=sα is La

≤sα ∧ La
≥sα, La

>sα is ¬La
≤sα.

For example, the expression

p ∧ Ua
=0.9L

b
=0.3(p ∨ q)

is a formula of our language.

2.2 Semantics

The semantics for the logic ILUPP is based on the possible-world approach. Every
world is equipped with an evaluation function on propositional letters, and one
generalized probability space for each agent.

Definition 2 (ILUPP-structure). An ILUPP-structure is a tuple 〈W,LUP, υ〉,
where:

– W is a nonempty set of worlds,
– LUP assigns, to every w ∈ W and every a ∈ Σ, a space, such that

LUP (a,w) = 〈W (a,w),H(a,w), P (a,w)〉, where:
• ∅ �= W (a,w) ⊆ W ,
• H(a,w) is an algebra of subsets of W (a,w), i.e. a set of subsets of W (a,w)

such that:

174 D. Doder et al.

– W (a,w) ∈ H(a,w),
– if A,B ∈ H(a,w), then W (a,w) \ A ∈ H(a,w) and A ∪ B ∈ H(a,w),

• P (a,w) is a set of finitely additive probability measures defined on
H(a,w), i.e. for every μ(a,w) ∈ P (a,w), μ(a,w) : H(a,w) −→ [0, 1]
and the following conditions hold:

∗ μ(a,w)(W (a,w)) = 1,
∗ μ(a,w)(A ∪ B) = μ(a,w)(A) + μ(a,w)(B), whenever A ∩ B = ∅.

– υ : W × L −→ {true, false} provides for each world w ∈ W a two-valued
evaluation of the primitive propositions.

Now we define satisfiability of the formulas from ForILUPP in the worlds
of ILUPP-structures. As we mentioned in the introduction, for any set P of
probability measures defined on given algebra H, the lower probability measure
P� and the upper probability measure P � are defined by

– P�(X) = inf{μ(X) | μ ∈ P} and
– P �(X) = sup{μ(X) | μ ∈ P},

for every X ∈ H. It is easy to check that

P�(X) = 1 − P �(Xc), (1)

for every X ∈ H. In the context of the definition of an ILUPP-structure, we will
denote P�(a,w)([α]aM,w) = inf{μ([α]aM,w) | μ ∈ P (a,w)} and P �(a,w)([α]aM,w) =
sup{μ([α]aM,w) | μ ∈ P (a,w)}, where [α]aM,w = {u ∈ W (a,w) | M,u |= α}.

Definition 3 (Satisfiability relation). For every ILUPP structure M =
〈W,LUP, υ〉 and every w ∈ W , the satisfiability relation |= fulfills the follow-
ing conditions:

– if p ∈ L, M,w |= p iff υ(w)(p) = true,
– M,w |= ¬α iff it is not the case that M,w |= α,
– M,w |= α ∧ β iff M,w |= α and M,w |= β,
– M,w |= Ua

≥sα iff P �(a,w)([α]aM,w) ≥ s,
– M,w |= La

≥sα iff P�(a,w)([α]aM,w) ≥ s.

We will omit M when it’s clear from context. The possible problem with the
previous definition is that it might happen that for some M , w, a and α the
set [α]aM,w doesn’t belong to W (a,w). For that reason, we will consider only so
called measurable structures.

Definition 4 (Measurable structure). The structure M is measurable if for
every a ∈ Σ and every w ∈ W , H(a,w) = {[α]w | α ∈ ForILUPP}. The class of
all measurable structures of the logic ILUPP will be denoted by ILUPPMeas.

Definition 5 (Satisfiability of a formula). A formula α ∈ ForILUPP is sat-
isfiable if there is a world w in an ILUPPMeas-model M such that w |= α; α
is valid if it is satisfied in every world in every ILUPPMeas-model M . A set of
formulas T is satisfiable if there is a world w in an ILUPPMeas-model M such
that w |= α for every α ∈ T .

Multi-agent Logic with Iterations of Upper and Lower Probability Operators 175

3 Decidability

In this section, we prove our main technical result. Recall the satisfiability prob-
lem: given an ILUPP-formula α, we want to determine if there exists a world
w in an ILUPPMeas-model M such that w |= α. Decidability for ILUPP will be
proved in two steps:

– first, we show that an ILUPP-formula is satisfiable iff it is satisfiable in a
measurable structures with a finite number of worlds,

– second, we show that we can consider only finite measurable structures, i.e.,
measurable structure with finite number of worlds and with finite sets of
probability measures in every world and for every agent, and

– third, we reduce the satisfiability problem in those finite models to a decidable
linear programming problem.

In the first part of the proof, we will use the method of filtration [15]. Like
the previous papers on the logical formalization of upper and lower probabilities
[13,33], we also use the characterization theorem by Anger and Lembcke [2]. It
uses the notion of (n, k)-cover.

Definition 6 ((n, k)-cover). A set A is said to be covered n times by a multiset
{{A1, . . . , Am}} of sets if every element of A appears in at least n sets from
A1, . . . , Am, i.e., for all x ∈ A, there exists i1, . . . , in in {1, . . . , m} such that for
all j ≤ n, x ∈ Aij . An (n, k)-cover of (A,W) is a multiset {{A1, . . . , Am}} that
covers W k times and covers A n + k times.

Now we can state the characterization theorem.

Theorem 1 (Anger and Lembcke [2]). Let W be a set, H an algebra of
subsets of W , and f a function f : H −→ [0, 1]. There exists a set P of probability
measures such that f = P � iff f satisfies the following three properties:

(1) f(∅) = 0,
(2) f(W) = 1,
(3) for all natural numbers m,n, k and elements A1, . . . , Am in H, if the multiset

{{A1, . . . , Am}} is an (n, k)-cover of (A,W), then k+nf(A) ≤ ∑m
i=1 f(Ai).

Let SF (α) denote the set of all subformulas of a formula α, i.e.

SF (α) = {β | β is a subformula of α}.

Theorem 2. If a formula α is satisfiable, then it is satisfiable in an ILUPPMeas-
model with at most 2|SF (α)| worlds.

Proof. Suppose that a formula α holds in some world of the model M =
〈W,LUP, υ〉 and let k = |SF (α)|. By ≈, we will denote an equivalence rela-
tion over W 2, such that

w ≈ u if and only if for every β ∈ SF (α), w |= β iff u |= β.

176 D. Doder et al.

Since there are finitely many subformulas of α, we know that the quotient set

W/≈ = {Cwi
| wi ∈ W}

is finite, where
Cwi

= {u ∈ W | u ≈ wi}
is the class of equivalence of wi. More precisely,

|W/≈| ≤ 2k.

Next, from each class of equivalence Cwi
, we choose an element wi.

Consider a tuple M = 〈W, LUP, υ〉, where:

– W = {w1, w2, . . . },
– For every a and for every wi LUP (a,wi) = 〈W (a,wi),H(a,wi), P (a,wi)〉 is

defined as follows:
– W (a,wi) = {wj ∈ W | (∃u ∈ Cwj

)u ∈ W (a,wi)}
– H(a,wi) = 2W (a,wi)

– P (a,wi) is any set of finitely additive measures, such that for every
D ∈ H(a,wi), P

�
(a,wi)(D) = P �(a,wi)(

⋃
wj∈D(Cwj

∩ W (a,wi)))
– υ(wi)(p) = υ(wi)(p), for every primitive proposition p ∈ L.

First, we have to prove that P
�
(a,wi) satisfies the conditions (1) − (3) from

Theorem 1, which will guarantee the existence of sets P (a,wi), for every agent
a and each wi ∈ W .

(1) P
�
(a,wi)(∅) = P �(a,wi)(

⋃
wj∈∅(Cwj

∩ W (a,wi))) = P �(a,wi)(∅) = 0;

(2) P
�
(a,wi)(W (a,wi)) = P �(a,wi)(

⋃
wj∈W (a,wi)

(Cwj
∩ W (a,wi))) =

= P �(a,wi)(W (a,wi)) = 1;
(3) Let {{D1, . . . , Dm}} be an (n, k)-cover of (D,W (a,wi)). That means:

(i) every element from D appears in at least n + k sets from D1, . . . , Dm;
(ii) every element from W (a,wi) appears in at least k sets from D1, . . . , Dm.
Therefore,

(iii) every element from (
⋃

u∈D(Cu ∩W (a,wi)) appears in at least n+ k sets
from

⋃
u∈D1

(Cu ∩ W (a,wi)), . . . ,
⋃

u∈Dm
(Cu ∩ W (a,wi));

(iv) every element from W (a,wi) appears in at least k sets from⋃
u∈D1

(Cu ∩ W (a,wi)), . . . ,
⋃

u∈Dm
(Cu ∩ W (a,wi)).

Hence, by definition, we obtain that a multiset

{{
⋃

u∈D1

(Cu ∩ W (a,wi)), . . . ,
⋃

u∈Dm

(Cu ∩ W (a,wi))}}

is an (n, k)-cover of

(
⋃

u∈D

(Cu ∩ W (a,wi)),W (a,wi)).

Multi-agent Logic with Iterations of Upper and Lower Probability Operators 177

Hence, using the fact that P �(a,wi) is an upper probability, from Theorem1,
we have that

k + nP �(a,wi)(
⋃

u∈D

(Cu ∩ W (a,wi))) ≤
m∑

j=1

P �(a,wi)(
⋃

u∈Dj

(Cu ∩ W (a,wi))),

and therefore

k + nP
�
(a,wi)(D) ≤

m∑

j=1

P
�
(a,wi)(Dj).

Using induction on the complexity of a formula from the set SF (α), we can
prove that for every w ∈ W and every β ∈ SF (α),

M,w |= β if and only if M,w |= β.

If a formula is a propositional letter or obtained using Boolean connectives, the
claim is trivial. So, let us consider the case when β = Ua

≥sγ:

M,w |= Ua
≥sγ iff

P �(a,w)({u ∈ W (a,w) | M,u |= γ}) ≥ s iff

P �(a,w)(
⋃

M,u|=γ

Cu ∩ W (a,w)) ≥ s iff (ind. hyp)

P
�
(a,w)({u ∈ W

�
(a,w) | M,u |= γ}) ≥ s iff

M,w |= Ua
≥sγ.

Using the Eq. (1) and the fact that P
�
(a,w) is an upper probability, the case

when β = La
≥sγ can be proved analogously. �

In the second part of the proof, we use the following result of Halpern and
Pucella [13].

Theorem 3 ([13]). Let P be a set of probability measures defined on an algebra
H over a finite set W . Then there exists a set P ′ of probability measures such
that, for each X ∈ H, P ∗(X) = (P ′)∗(X). Moreover, there is a probability
measure μX ∈ P ′ such that

μX(X) = P ∗(X).

As a direct consequence of Theorems 2 and 3, we obtain the following result.

Lemma 1. If a formula α is satisfiable, then it is satisfiable in an ILUPPMeas-
model with at most 2|SF (α)| worlds and for every agent a ∈ Σ and every w ∈ W ,
H(a,w) = 2W (a,w) and

|P (a,w)| = |H(a,w)|.
Furthermore, for each X ∈ H(a,w), there exists a μX ∈ P (a,w) such that

μX(a,w)(X) = P ∗(a,w)(X).

178 D. Doder et al.

With this lemma we are ready to prove the decidability result for the ILUPP
logic.

Theorem 4. Satisfiability problem for ILUPPMeas is decidable.

Proof. Let M = 〈W,LUP, υ〉 be an ILUPPMeas-model and α an arbitrary for-
mula. Also, let

SF (α) = {β1, . . . , βk}.

In every w ∈ W , exactly one of the formulas of the following form:

±β1 ∧ · · · ∧ ±βk

holds, where ±βi denotes βi or ¬βi. We will call that formula a characteristic
formula for a world w (characteristic formula for a world wi will be denoted by
αi).
By Lemma 1, we know that there exists an ILUPPMeas-model M with

(1) at most 2k worlds and
(2) at most 22

k

probabilistic measures (for any agent and any world),

such that α holds in some world of the model M iff α holds in some world of a
model M .
For every l ≤ 2k, we will consider models with

– l worlds, w1, . . . , wl, and
– for every agent a and every world w, sets of probability measures P (a,w),

such that |P (a,w)| = 2|W (a,w)|, for every W (a,w) ⊆ {w1, . . . wl}.

In each of these worlds, exactly one characteristic formula holds. So, for each l,
we will consider all possible sets of l characteristic formulas such that:

(a) Let αi be a characteristic formula. In αi we replace every occurrence of a for-
mula starting with a probabilistic operator with an atomic proposition (all
the occurrences of the same formula are assigned the same atomic proposi-
tion). Then we obtain a propositional formula, α′

i. Using any algorithm for
propositional satisfiability we check whether α′

i is satisfiable. If α′
i passes the

test, then αi is further considered for probabilistic tests (as in the paper). If
α′

i does not pass the test, then αi is no longer considered;
(b) At least one formula contains α.

For each choice, and each world wi, we will consider following set of linear equal-
ities and inequalities (by β ∈ (αj)+ we will denote that β is a conjuct in αj and
by β ∈ (αj)− we will denote that ¬β is a conjuct in αj):

(1) μ(a,wi)({wj}) ≥ 0, for each μ(a,wi) ∈ P (a,wi) and j = 1, . . . , l;
(2)

∑

wj∈W (a,wi)

μ(a,wi)({wj}) = 1, for every μ(a,wi) ∈ P (a,wi);

(3)
∑

wj∈X

μX(a,wi)({wj}) ≥ ∑

wj∈X

μY (a,wi)({wj}), for every X,Y ⊆ W (a,wi);

Multi-agent Logic with Iterations of Upper and Lower Probability Operators 179

(4)
∑

wj :β∈(αj)+
μX(a,wi)({wj}) ≥ s, if Ua

≥sβ ∈ αi, X = {wj | β ∈ (αj)+};

(5)
∑

wj :β∈(αj)+
μX(a,wi)({wj}) < s, if ¬Ua

≥sβ ∈ αi, X = {wj | β ∈ (αj)+};

(6)
∑

wj :β∈(αj)−
μX(a,wi)({wj}) ≤ 1 − s, if La

≥sβ ∈ αi, X = {wj | β ∈ (αj)−};

(7)
∑

wj :β∈(αj)−
μX(a,wi)({wj}) > 1 − s, if ¬La

≥sβ ∈ αi, X = {wj | β ∈ (αj)−}.

– First inequality states that all the measures must be nonnegative.
– Second equality assures that the probability of the set of all possible worlds

has to be equal to 1.
– Third inequality corresponds to the fact that μX(a,w)(X) = P ∗(a,w)(X)

and therefore

μX(a,w)(X) ≥ μ(a,w)(X), for all μ(a,w) ∈ P (a,w).

– For the fourth and fifth inequality, note that if X = {wj | β ∈ (αj)+}
∑

wj :β∈(αj)+

μX(a,wi)({wj}) = P ∗(a,wi)([β]awi
),

so these inequalities reflect the appropriate constraints.
– In order to understand sixth and seventh inequality, first recall the equality

connecting upper and lower probabilty:

P ∗([¬β]awi
) = 1 − P∗([β]awi

).

Next, note that if X = {wj | β ∈ (αj)−}
∑

wj :β∈(αj)−
μX(a,wi)({wj}) = P ∗(a,wi)([¬β]awi

).

Consequently, if
P∗([β]awi

) ≥ s,

then
P ∗([¬β]awi

) ≤ 1 − s,

and similarly for the case when P∗([β]awi
) < s.

The equations and inequalities 1–7 form a finite system of linear equalities
and inequalities and it is well known that solving this system is decidable. If
for some fixed l and fixed choice of characteristic formulas, and each choice of
subsets W (a,w) of considered sets of worlds (for every agent a and every consid-
ered world w), corresponding system is solvable, then in each world, probabilistic
space can be defined. Moreover, in every world w of the model, the character-
istic formula of the world holds in w. Since α belongs to at least one of the
corresponding characteristic formulas, we have that α is satisfiable.

180 D. Doder et al.

If the test fails, and there is another possibility of choosing l and/or the set
of l worlds and/or subsets W (a,w) of chosen sets of worlds, we continue with the
procedure. Otherwise, if for any l, any choice of characteristic formulas and any
choice of subsets W (a,w), appropriate system is not solvable, using Lemma 1,
we conclude that α is not ILUPPMeas-satisfiable.

Note that in the previously described method we consider only finitely many
systems of linear equation and inequalities. Therefore, the satisfiability problem
is decidable. �

4 A Complete Axiomatization

Having settled the decidability issue the for the logic ILUPP, we turn to the
problem of developing an axiomatic system for the logic ILUPP. That system
will be denoted by AxILUPP.

4.1 The Axiomatization AxILUPP

We start with the observation that, like any other real-valued probabilis-
tic logic, ILUPP is not compact. Indeed, consider the set of formulas T =
{¬U=0α} ∪ {U< 1

n
α | n is a positive integer }. Obviously, every finite subset

of T is ILUPPMeas-satisfiable, but the set T is not. Consequently, any finitary
axiomatic system would be incomplete [38]. In order to achieve completeness,
we use two infinitary rules of inference, with countably many premises and one
conclusion.

In order to axiomatize upper and lower probabilities, we need to completely
characterize them with a small number of properties. There are many complete
characterizations in the literature, and the earliest appears to be by Lorentz [24].
We will use Theorem 1 from the previous section.

For the logic ILUPP, we use a minor modification of the axiomatic system
for the logic LUPP in [33].

Axiom schemes

(1) all instances of the classical propositional tautologies
(2) Ua

≤1α ∧ La
≤1α

(3) Ua
≤rα → Ua

<sα, s > r
(4) Ua

<sα → Ua
≤sα

(5) (Ua
≤r1

α1 ∧ · · · ∧ Ua
≤rm

αm) → Ua
≤rα, if α → ∨

J⊆{1,...,m},|J|=k+n

∧
j∈J αj and

∨
J⊆{1,...,m},|J|=k

∧
j∈J αj are tautologies, where r =

∑m
i=1 ri−k

n , n �= 0
(6) ¬(Ua

≤r1
α1 ∧ · · · ∧ Ua

≤rm
αm), if

∨
J⊆{1,...,m},|J|=k

∧
j∈J αj is a tautology and

∑m
i=1 ri < k

(7) La
=1(α → β) → (Ua

≥sα → Ua
≥sβ)

Inference Rules

(1) From α and α → β infer β

Multi-agent Logic with Iterations of Upper and Lower Probability Operators 181

(2) From α infer La
≥1α

(3) From the set of premises

{α → Ua
≥s− 1

k
β | k ≥ 1

s
}

infer α → Ua
≥sβ

(4) From the set of premises

{α → La
≥s− 1

k
β | k ≥ 1

s
}

infer α → La
≥sβ.

The axioms 5 and 6 together capture the third condition from the Theorem1
(see [33]). The rules 3 and 4 are infinitary rules of inference and intuitively state
that if an upper/lower probability is arbitrary close to a rational number s then
it is at least s.

Now we define some proof theoretical notions.

– � α (α is a theorem) iff there is an at most denumerable sequence of formulas
α1, α2, . . . , α, such that every αi is an axiom or it is derived from the preceding
formulas by an inference rule;

– T � α (α is derivable from T) if there is an at most denumerable sequence of
formulas α1, α2, . . . , α, such that every αi is an axiom or a formula from the
set T , or it is derived from the preceding formulas by an inference rule, with
the exception that Inference Rule 2 can be applied only to the theorems;

– T is consistent if there is at least one formula α ∈ ForILUPP that is not
deducible from T , otherwise T is inconsistent;

– T is maximal consistent set if it is consistent and for every α ∈ ForILUPP,
either α ∈ T or ¬α ∈ T ;

– T is deductively closed if for every α ∈ ForILUPP, if T � α, then α ∈ T .

Note that T is inconsistent iff T � ⊥. Also, it is easy to check that every maximal
consistent set is deductively closed.

It is easy to check that the axiomatic system AxILUPP is sound with respect
to the class of ILUPPMeas-models.

4.2 Completeness

We prove that the axiomatization AxILUPP is complete, using a Henkin-like con-
struction. Due to the presence of infinitary rules, the standard completion tech-
nique (Lindenbaum’s theorem) has to be modified in the following way: if the
current theory is inconsistent with the current formula and that formula can be
derived by one of infinitary inference rules, than one of the premises must be
blocked.

The proof of completeness is a direct combination of the proof techniques
presented in our papers [33,34]. Thus, here we only present a sketch of the
proof, and for details and the completion of the proof we refer the reader to
[33,34].

182 D. Doder et al.

Theorem 5 (Strong completeness). If α is a formula, and T is a set of
formulas of the logic ILUPP, then T � α iff T |= α.

Sketch of the Proof. First we point out that the theorem follows from soundness
of the axiomatic system AxILUPP, and the following usual formulation of strong
completeness:

Every consistent set of formulas T is satisfiable.

Let us prove this statement. First, we will extend T to a maximal consistent
set T ∗. We assume an enumeration α0, α1, . . . of all formulas. Then we define
the chain of sets Ti, i = 0, 1, 2, . . . and the set T ∗ in the following way:

(1) T0 = T ,
(2) for every i ≥ 0,

(a) if Ti ∪ {αi} is consistent, then Ti+1 = Ti ∪ {αi}, otherwise
(b) if αi is of the form β → Ua

≥sα, then Ti+1 = Ti ∪ {¬αi, β → ¬Ua
≥s− 1

n

α},
for some positive integer n, so that Ti+1 is consistent, otherwise

(c) if αi is of the form β → La
≥sα, then Ti+1 = Ti ∪ {¬αi, β → ¬La

≥s− 1
n

α},
for some positive integer n, so that Ti+1 is consistent, otherwise

(d) Ti+1 = Ti ∪ {¬αi}.
(3) T � =

⋃∞
i=0 Ti.

The proof that T ∗ is a maximal consistent set is based on the following obser-
vations:

– Natural numbers (n), from the steps 2(b) and 2(c) of the construction exist;
this follows from Deduction Theorem, which holds in ILUPP logic (the deduc-
tion theorem can be proved using the implicative form of the two infinitary
inference rules, and the fact that the application of Rule 2 is restricted to
theorems only).

– Each Ti is consistent, by construction.
– T ∗ does not contain all the formulas, by construction, using the fact that all

Ti’s are consistent.
– For every formula α, either α ∈ T ∗ or ¬α ∈ T ∗, by construction (steps (1)

and (2)).
– For every formula α, if T � � α, then α ∈ T � (the proof of this fact is by the

induction on the length of the inference).
– By the last two facts, T � is a deductively closed set, and T � does not contain

all the formulas, so it is consistent. Therefore, T � is a maximal consistent set.

Now we define the canonical model MCan = 〈W,LUP, υ〉 such that:

– W = {w | w is a maximal consistent set of formulas},
– for every world w and every propositional letter p, υ(w)(p) = true iff p ∈ w,
– for every a ∈ Σ and w ∈ W , LUP (a,w) = 〈W (a,w),H(a,w), P (a,w)〉 is

defined in the following way:
• W (a,w) = W ,

Multi-agent Logic with Iterations of Upper and Lower Probability Operators 183

• H(a,w) = {{u | u ∈ W (a,w), α ∈ u} | α ∈ ForILUPP},
• P (a,w) is any set of probability measures such that

P �(a,w)({u | u ∈ W (a,w), α ∈ u}) = sup{s | U≥sα ∈ w}.

We have the following properties of MCan:

– For every formula α and every w ∈ W , α ∈ w iff MCan, w |= α (the proof is
on the complexity of the formula α).

– For every a ∈ Σ, every w ∈ W and every formula α, {u | u ∈ W (a,w), α ∈
u} = [α]aw. (this follows from the previous item).

– MCan is a well defined measurable structure (the proof that P �(a,w) is an
upper probability measure follows from Theorem1 and the axioms 5 and 6).

Recall that we extended T to the maximal consistent set T ∗. We showed that
for every formula α, and every w ∈ W , w |= α iff α ∈ w. Since T ∗ ∈ W , we
obtain MCan, T ∗ |= T . �

5 Conclusion

In this paper we present the proof-theoretical analysis of a logic which allows
making statements about upper and lower probabilities. The introduced for-
malism can be used for reasoning not only about lower and upper probabilities
an agent assigns to a certain event, but also about her uncertain belief about
other agent’s imprecise probabilities. The language of ILUPP is a modal language
which extends propositional logic with the unary operators Ua

≥r and La
≥r, where

a is an agent and r ranges over the unit interval of rational numbers. The corre-
sponding semantics ILUPPMeas consists of the measurable Kripke models with
sets of finitely additive probability measures attached to each possible world.

We prove that the satisfiability problem for ILUPP logic is decidable. In the
proof, we use the method of filtration [15] to show that if a formula is satisfiable
in a world w of an ILUPP structure, then it is satisfiable in a finite structure.
We also use a reduction to linear programming to deal with infinitely many
probability measures definable on finite algebras, and to solve the satisfiability
problem in a finite number of steps.

We also prove that the proposed axiomatic system AxILUPP is strongly com-
plete with respect to the class of ILUPPMeas-models. Since the logic is not com-
pact, the axiomatization contains infinitary rules of inference. In [33] it is shown
that the same axiomatic system (the only difference is that in [33] only one agent
is considered) is sound and complete for a class of LUPPMeas-models. This situ-
ation is not an exception. For example, modal system K is sound and complete
with respect to the class of all modal models, but also with respect to the class
of all irreflexive models [15].

We propose two topics for future work. First, we will try to prove decid-
ability for the logic ILUPP by employing a tableau procedure. Such a method
is developed in [21] for a probabilistic logic with iterations of standard proba-
bility operators. We believe that a similar tableaux method can be applied for

184 D. Doder et al.

ILUPP. Finally, the upper and lower probabilities are just one approach in devel-
opment of imprecise probability models. In future work, we also wish to logically
formalize dierent imprecise probabilities.

Acknowledgments. This work was supported by the SNSF project 200021 165549
Justifications and non-classical reasoning, by the Serbian Ministry of Education and
Science through projects ON174026, III44006 and ON174008, and by ANR-11-LABX-
0040-CIMI.

References

1. Abadi, M., Halpern, J.Y.: Decidability and expressiveness for first-order logics of
probability. Inf. Comput. 112, 1–36 (1994)

2. Anger, B., Lembcke, J.: Infinitely subadditive capacities as upper envelopes of
measures. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 68,
403–414 (1985)

3. Cintula, P., Noguera, C.: Modal logics of uncertainty with two-layer syntax: a
general completeness theorem. In: Kohlenbach, U., Barceló, P., de Queiroz, R.
(eds.) WoLLIC 2014. LNCS, vol. 8652, pp. 124–136. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44145-9 9

4. de Cooman, G., Hermans, F.: Imprecise probability trees: bridging two theories of
imprecise probability. Artif. Intell. 172(11), 1400–1427 (2008)

5. Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)
6. Fagin, R., Halpern, J., Megiddo, N.: A logic for reasoning about probabilities. Inf.

Comput. 87(1–2), 78–128 (1990)
7. Fagin, R., Halpern, J.: Reasoning about knowledge and probability. J. ACM 41(2),

340–367 (1994)
8. Fattorosi-Barnaba, M., Amati, G.: Modal operators with probabilistic interpreta-

tions I. Stud. Log. 46(4), 383–393 (1989)
9. Frish, A., Haddawy, P.: Anytime deduction for probabilistic logic. Artif. Intell. 69,

93–122 (1994)
10. Gaifman, H., Haddawy, P.: A theory of higher order probabilities. In: Skyrms, B.,

Harper, W.L. (eds.) Causation, Chance and Credence. Proceedings of the Irvine
Conference on Probability and Causation, vol. 1, pp. 191–219. Springer, Dordrecht
(1988)

11. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46, 311–
350 (1990)

12. Halpern, J.Y., Pucella, R.: A logic for reasoning about evidence. J. Artif. Intell.
Res. 1, 1–34 (2006)

13. Halpern, J.Y., Pucella, R.: A logic for reasoning about upper probabilities. J. Artif.
Intell. Res. 17, 57–81 (2002)

14. Huber, P.J.: Robust Statistics. Wiley, New York (1981)
15. Hughes, G.E., Cresswell, M.J.: A Companion to Modal Logic. Methuen, London

(1984)
16. Heifetz, A., Mongin, P.: Probability logic for type spaces. Games Econ. Behav. 35,

31–53 (2001)
17. Ikodinović, N., Ognjanović, Z., Rašković, M., Perović, A.: Hierarchies of proba-

bilistic logics. Int. J. Approx. Reason. 55(9), 1830–1842 (2014)

https://doi.org/10.1007/978-3-662-44145-9_9

Multi-agent Logic with Iterations of Upper and Lower Probability Operators 185

18. Ikodinović, N., Rašković, M., Marković, Z., Ognjanović, Z.: A first-order probabilis-
tic logic with approximate conditional probabilities. Log. J. IGPL 22(4), 539–564
(2014)

19. Ilić-Stepić, A., Ognjanović, Z.: Complex valued probability logics. Publications de
l’Institut Mathematique, N.s. tome 95(109), 73–86 (2014)

20. Ilić-Stepić, A., Ognjanović, Z., Ikodinović, N.: Conditional p-adic probability logic.
Int. J. Approx. Reason. 55(9), 1843–1865 (2014)

21. Kokkinis, I.: The complexity of satisfiability in non-iterated and iterated proba-
bilistic logics. arXiv:1712.00810v1

22. Kyburg, H.E.: Probability and the Logic of Rational Belief. Wesleyan University
Press, Middletown (1961)

23. Levi, I.: The Enterprise of Knowledge. MIT Press, London (1980)
24. Lorentz, G.G.: Multiply subadditive functions. Can. J. Math. 4(4), 455–462 (1952)
25. Meier, M.: An infinitary probability logic for type spaces. Isr. J. Math. 192(1),

1–58 (2012)
26. Miranda, E.: A survey of the theory of coherent lower previsions. Int. J. Approx.

Reas. 48(2), 628–658 (2008)
27. Milošević, M., Ognjanović, Z.: A first-order conditional probability logic. Log. J.

IGPL 20(1), 235–253 (2012)
28. Nilsson, N.: Probabilistic logic. Artif. Intell. 28, 71–87 (1986)
29. Ognjanović, Z., Rašković, M.: Some probability logics with new types of probability

operators. J. Log. Comput. 9(2), 181–195 (1999)
30. Ognjanović, Z., Rašković, M.: Some first-order probability logics. Theoret. Comput.

Sci. 247(1–2), 191–212 (2000)
31. Ognjanović, Z., Rasković, M., Marković, Z.: Probability Logics - Probability-Based

Formalization of Uncertain Reasoning. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-319-47012-2

32. Rašković, M., Marković, Z., Ognjanović, Z.: A logic with approximate conditional
probabilities that can model default reasoning. Int. J. Approx. Reason. 49(1), 52–
66 (2008)

33. Savić, N., Doder, D., Ognjanović, Z.: Logics with lower and upper probability
operators. Int. J. Approx. Reason. 88, 148–168 (2017)

34. Savić, N., Doder, D., Ognjanović, Z.: A first-order logic for reasoning about higher-
order upper and lower probabilities. In: Antonucci, A., Cholvy, L., Papini, O. (eds.)
ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 491–500. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61581-3 44

35. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

36. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall,
London (1991)

37. Walley, P.: Towards a unified theory of imprecise probability. Int. J. Approx. Rea-
son. 24(2–3), 125–148 (2000)

38. van der Hoek, W.: Some consideration on the logics PFD. J. Appl. Non-Class.
Logics 7(3), 287–307 (1997)

39. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1,
3–28 (1978)

http://arxiv.org/abs/1712.00810v1
https://doi.org/10.1007/978-3-319-47012-2
https://doi.org/10.1007/978-3-319-47012-2
https://doi.org/10.1007/978-3-319-61581-3_44

Probabilistic Team Semantics

Arnaud Durand1, Miika Hannula2, Juha Kontinen3, Arne Meier4,
and Jonni Virtema5(B)

1 Institut de Mathématiques de Jussieu - Paris Rive Gauche,
CNRS UMR 7586, Université Paris Diderot, Paris, France

durand@math.univ-paris-diderot.fr
2 Department of Computer Science, University of Auckland, Auckland, New Zealand

m.hannula@auckland.ac.nz
3 Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland

juha.kontinen@helsinki.fi
4 Institut für Theoretische Informatik,

Leibniz Universität Hannover, Hanover, Germany
meier@thi.uni-hannover.de

5 Databases and Theoretical Computer Science, Hasselt University, Hasselt, Belgium
jonni.virtema@uhasselt.be

Abstract. Team semantics is a semantical framework for the study of
dependence and independence concepts ubiquitous in many areas such as
databases and statistics. In recent works team semantics has been gener-
alised to accommodate also multisets and probabilistic dependencies. In
this article we study a variant of probabilistic team semantics and relate
this framework to a Tarskian two-sorted logic. We also show that very
simple quantifier-free formulae of our logic give rise to NP-hard model
checking problems.

1 Introduction

Team semantics is the modern approach for the study of logics of dependence
and independence. The systematic development of team semantics began by the
introduction of Dependence Logic in 2007 [20] although the key ingredients of the
new semantics were already introduced by Hodges 1997 [14]. In team semantics,
satisfaction of formulae is defined not via single assignments but via sets of
assignments (teams). Sets of assignments enables one to introduce a multitude
of interesting atoms to the logic such as dependence, independence, and inclusion
atoms:

=(x, y), y ⊥x z and x ⊆ y

that do not make sense with respect to a single assignment. Independence logic,
introduced by Grädel and Väänänen [10], extends first-order logic with inde-
pendence atoms. The independence atom y ⊥x z holds if the value of z does
not tell us anything new about the value of y when the value of x is fixed. By
viewing a team X with domain {x1, . . . , xn} as a database table over attributes
x1, . . . , xn, dependence, inclusion, and independence atoms correspond exactly
c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 186–206, 2018.
https://doi.org/10.1007/978-3-319-90050-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_11&domain=pdf

Probabilistic Team Semantics 187

to functional, inclusion, and embedded multivalued dependencies (EMVDs), see,
e.g., [12,13,18]. Moreover EMVDs and probabilistic conditional independence
Y ⊥ Z|X have significant connections, confer, e.g., [1,11,21]. Multiteam seman-
tics, introduced by Durand et al. [3], is the multiset analogue of team seman-
tics. This setting enables the logical study of probabilistic dependencies such
as the probabilistic conditional independence atoms y ⊥⊥x z that inherit their
semantics from the corresponding notion Y ⊥ Z|X from statistics. One of the
advantages of multiteam semantics is that it allowes to study the interplay of
atoms such as =(x, y), y ⊥x z, and y ⊥⊥x z in a unified framework.

In this paper, we focus on probabilistic team semantics. A probabilistic team
is a set of assignments endowed with a probability distribution that maps each
assignment of the set to a ratio. There is a vast literature on probabilistic log-
ics but so far only few works study probabilistic team semantics. The teams
that arise from applications (e.g., database tables) often contain duplicate rows
leading naturally to multiteams (i.e., multiset analogues of teams). Furthermore,
finite multiteams can be viewed as probabilistic teams endowed with the count-
ing measure induced by the multiplicities. Importantly, in many applications,
duplicate rows can store relevant information; e.g., if a table is used to store an
outcome of a poll or a collection of outcomes of measurements. In these cases
the interest lies in the distribution of the data and not so much in the size of the
sample. Hence it makes sense to abstract from the concrete data (multiteams) to
the distribution of data (probabilistic teams). We consider a logic that uses prob-
abilistic independence y ⊥⊥x z and marginal identity atoms x ≈ y as primitives
in the setting of probabilistic team semantics. These atoms were recently intro-
duced by Durand et al. [3] in the context of multiteam semantics. The marginal
identity atom x ≈ y expresses that in a team the distribution of values for the
variables x coincides with that of y. We relate this logic to a natural variant
of (two-sorted) existential second-order logic with quantification over rational
distributions. We also consider the complexity of model checking and show that
very simple formulae using x ≈ y give rise to NP-hard model checking problems.

Example 1. Consider a database table that lists results of experiments. The data
can be regarded either as a multiteam or as the related probabilistic team using
the counting measure; both interpretations having its own advantages. Each
record corresponds to outcomes of measurements obtained simultaneously in two
locations. The table has four attributes Test1 and Test2 that range over the pos-
sible types of measurements and Outcome1 and Outcome2 that range over out-
comes of the measurements. The probabilistic independence atom Test1 ⊥⊥ Test2
expresses that the types of measurements are independently picked in the two
locations. The marginal identity atom (Test1,Outcome1) ≈ (Test2,Outcome2)
expresses that the distributions of results are the same in both test sites. The
formula Test1 = Test2∨ (Test1 �= Test2∧Outcome1 ⊥⊥ Outcome2) expresses that
there is no correlation between outcomes of the different measurements.

Example 2. Consider a database table that describes voting behaviour in two
different elections by some sample of voters. Attributes of the table are Election1

188 A. Durand et al.

and Election2 that range over political parties. Each record corresponds to a vot-
ing behaviour of a voter in the sample. The table then gives rise to a probabilistic
team that approximates the voting behaviour of the population. The complex
formula Election1 = Election2 ∨ (Election1 �= Election2 ∧ Election1 ≈ Election2)
expresses that each party obtained the same portion of swing voters in the second
election that it got in the first election.

It is well known that the satisfaction relation of team semantics can be for-
malised in (existential) second-order logic when the team is encoded by an addi-
tional relation. This result gives an upper bound and a “yardstick” for the expres-
sive power of many of the logics studied in the team semantics literature. One
of the motivations for the current article is to develop an analogous yardstick of
expressivity for logics over multiteams and probabilistic teams. We use a vari-
ant of existential second-order logic over two-sorted structures for this purpose
whose first sort encodes the first-order structure and whose second sort consists
of the closed interval [0, 1] of rational numbers Q[0,1] over which arithmetic oper-
ations of multiplication and sum can be applied. Distributions from the first sort
ranging over the second sort Q[0,1] encode probabilistic teams.

In the second part of the article we consider the complexity of model-checking
in probabilistic and multiteam semantics and show that, over multiteams, very
simple formulae using x ≈ y give rise to NP-hard model checking problems. This
result is in drastic contrast with the influential result of Galliani and Hella [7]
that inclusion atoms in the ordinary team semantics give rise to a logic equivalent
with (a fragment of) the least fixed point logic and accordingly is contained in
PTIME. Interestingly our reduction does not work under the slightly different
probabilistic interpretation of disjunction. It is an open question whether the
data-complexity of FO(x ≈ y) is in PTIME for the probabilistic semantics.

Previous Work on Probabilistic Team Semantics: Probabilistic versions of depen-
dence logic (and IF-logic) have been previously studied by Galliani, Mann, Sev-
enster, and Sandu [5,8,19]. Moreover, Hyttinen et al. [15,16] consider so-called
quantum team and measure team logics over probabilistic teams and give com-
plete axiomatisation for them. It is worth noting, as regards to the connectives
and quantifiers, our semantics is similar to the one defined by Galliani [5] and
that the atoms y ⊥⊥x z and x ≈ y were introduced only later by Durand et al. [3]
in the multiteam semantics context.

2 A Variant of Existential Second-Order Logic
with Quantification over Rational Distributions

First-order variables are denoted by x, y, z and tuples of first-order variables by
x,y,z. The length of the tuple x is denoted by |x|, and for two tuples x,y we
denote by x \y any tuple that lists those elements of x that do not appear in y.
By Var(x) we denote the set of variables that appear in the variable sequence x.
A vocabulary τ is a set of relation symbols and function symbols with prescribed
arities. We mostly denote relation symbols by R and function symbols by f , and

Probabilistic Team Semantics 189

the related arities by ar(R) and ar(f), respectively. A vocabulary is relational
(resp., functional) if it consists of only relation (resp., function) symbols. Simi-
larly, a structure is relational (resp., functional) if it is defined over a relational
(resp., functional) vocabulary. We let Var1 and Var2 denote disjoint countable
sets of first-order and function variables (with prescribed arities), respectively.
The set of rational numbers in the closed interval [0, 1] is denoted by Q[0,1]. Given
a finite set A, a function f : A → Q[0,1] is called a (probability) distribution if∑

s∈A f(s) = 1. In addition, the empty function is a distribution.
A relational τ -structure is a tuple A = (A, (RA

i)Ri∈τ), where A is a nonempty
set and each RA

i is a relation on A (i.e., RA
i ⊆ Aar(Ri)). In this paper, we consider

structures that enrich finite relational τ -structures by adding Q[0,1] as a second
domain sort and functions that map tuples from A to Q[0,1].

Definition 1. Let τ and σ be a relational and a functional vocabulary, respec-
tively. A probabilistic τ ∪ σ-structure is a tuple

A = (A,Q[0,1], (RA
i)Ri∈τ , (fA

i)fi∈σ),

where A (i.e. the domain of A) is a finite nonempty set, each RA
i is a relation

on A (i.e., a subset of Aar(Ri)), and each fA
i is a probability distribution from

Aar(fi) to Q[0,1] (i.e., a function such that
∑

a∈Aar(fi) fi(a) = 1).

Note that if f is a 0-ary function symbol, then fA is the constant 1. Next,
we define a variant of functional existential second-order logic with numerical
terms (ESOfQ) that is designed to describe properties of the above probabilistic
structures. As first-order terms we have only first-order variables. For a set σ
of function symbols, the set of numerical σ-terms i is defined via the following
grammar:

i ::=f(x) | i × i | SUMx i,

where x is a tuple of first-order variables from Var1 and f ∈ σ. The value of a
numerical term i in a structure A under an assignment s is denoted by [i]As . We
have the following rules for the numerical terms:

[f(x)]As := fA(s(x)), [i × j]As := [i]As · [j]As ,

[SUMx i(x,y)]As :=
∑

a∈A|x |

[i(a,y)]As ,

where · and
∑

are the multiplication and sum of rational numbers, respectively.
In this context, i(x,y) is a numerical term over variables in x and y. Note that,
in the semantics of SUMx i the tuple y could be empty. Furthermore let τ be
a relational vocabulary. The set of τ ∪ σ-formulae of ESOfQ is defined via the
following grammar:

φ ::= x = y | x �= y | i = j | i �= j | R(x) | ¬R(x) | φ∧φ | φ∨φ | ∃xφ | ∀xφ | ∃fψ,

where i is a numerical σ-term, R ∈ τ is a relation symbol, f ∈ Var2 is a function
variable, x is a tuple of first-order variables, and ψ is a τ ∪ (σ ∪ {f})-formula of

190 A. Durand et al.

ESOfQ. Note that the syntax of ESOfQ admits of only first-order subformulae to
appear in negation normal form. This restriction however does not restrict the
expressiveness of the language.

Semantics of ESOfQ is defined via probabilistic structures and assignments
analogous to first-order logic; note that first-order variables are always assigned
to a value in A whereas functions map tuples from A to Q[0,1]. In addition to
the clauses of first-order logic, we have the following semantical clauses:

A |=s i = j ⇔ [i]As = [j]As , A |=s i �= j ⇔ [i]As �= [j]As ,

A |=s ∃fφ ⇔ A[h/f] |=s φ for some probability distribution h : Aar(f) → Q[0,1],

where A[h/f] denotes the expansion of A that interprets f to h.
Note that the property of h being a probability distribution can be expressed

by the formula SUMxh(x) = 1 suggesting that it is not vital whether the restric-
tion to probability distributions is in the semantics or not; in this case, however,
Q[0,1] would not suffice as a second sort and the set of (non-negative) rationals
should be used instead. Furthermore, for relating ESOfQ to our probabilistic
team logic this assumption is essential. Recall that the constant 1 is defined by
the unique 0-ary function and is thus essentially included in the language. In
structures of size at least 2, the constant 0 can be defined by g(y) by the use of
the formula1

∃g∃x∃y (x �= y ∧ g(x) = 1).

In order to get some idea of the expressive power of ESOfQ, we note that the
uniformity of a distribution f can be expressed with

φ(f) := ∀xy(f(x) = 0 ∨ f(y) = 0 ∨ f(x) = f(y)).

Furthermore, let p
q be an arbitrary rational number. For k ≤ p, denote by k̂ the

length log(p + 1) bit sequence that encodes k, and denote by yk̂ the variable
sequence obtained from k̂ by replacing bits 0 and 1 with variables y0 and y1,
respectively. For l ≤ q − p, define z l̂ analogously in terms of bit sequences of
length log((q−p)+1). For instance, (y0, y0, . . . , y0, y0) is y0̂ and (y0, y0, . . . , y0, y1)
is y1̂. Let E := {yk̂z0̂ | 1 ≤ k ≤ p} ∪ {y0̂z l̂ | 1 ≤ l ≤ q − p}. Note that E is
not part of the syntax of our logic, but is used as a shorthand in the following
formula. Now i(x) = p

q can be described by

φ p
q
(x) :=∃y0y1∃f

(
y0 �= y1 ∧

∧

yz ,y ′z ′∈E

f(yz) = f(y′z′)∧

∀yz(yz /∈ E ↔ f(yz) = 0) ∧ i(x) = SUMyyz0̂

)
.

Note that, by construction, E is finite, and consequently φ p
q

is an ESOfQ-formula.

1 f(x) = 0 is always false for probability distributions f in structures of size 1.

Probabilistic Team Semantics 191

3 Probabilistic Team Semantics

In this section, we present probabilistic team semantics for probabilistic team
logics. Before going to probabilistic semantics, we quickly review the basics of
(multi)team semantics.

3.1 Team and Multiteam Semantics

Syntactically, team logics are extensions of first-order logic FO given by the
grammar rules:

φ ::= x = y | x �= y | R(x) | ¬R(x) | (φ ∧ φ) | (φ ∨ φ) | ∃xφ | ∀xφ,

where x is a tuple of first-order variables.
Let D be a finite set of first-order variables and A be a nonempty set. A

function s : D → A is called an assignment. The set D is the domain of s,
and the set A the codomain of s. For a variable x and a ∈ A, the assignment
s(a/x) : D ∪ {x} → A is equal to s with the exception that s(a/x)(x) = a.

A team is a finite set of assignments with a common domain and codomain.
Let X be a team with codomain A, and let F : X → P(A)\{∅} be a function. We
denote by X[A/x] the modified team {s(a/x) | s ∈ X, a ∈ A}, and by X[F/x]
the team {s(a/x) | s ∈ X, a ∈ F (s)}. Let A be a τ -structure and X a team with
codomain A, then we say that X is a team of A.

Definition 2. Let A be a τ -structure and X a team of A. The satisfaction rela-
tion |=X for first-order logic is defined as follows:

A |=X x = y ⇔ for all s ∈ X : s(x) = s(y)
A |=X x �= y ⇔ for all s ∈ X : s(x) �= s(y)
A |=X R(x) ⇔ for all s ∈ X : s(x) ∈ RA

A |=X ¬R(x) ⇔ for all s ∈ X : s(x) �∈ RA

A |=X (ψ ∧ θ) ⇔ A |=X ψ and A |=X θ
A |=X (ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ for some Y,Z ⊆ X s.t. Y ∪ Z = X
A |=X ∀xψ ⇔ A |=X[A/x] ψ
A |=X ∃xψ ⇔ A |=X[F/x] ψ holds for some F : X → P(A) \ {∅}.
Multiteams are multiset analogues of teams. Below we give a short introduc-

tion to multiteam semantics, as defined by Durand et al. [3], adjusted to the
notation used later in this paper.

Definition 3. A multiset is a function A : A → N. The set {a ∈ A | A(a) ≥ 1}
is the set of elements of the multiset A, and A(a) is the multiplicity of the
element a. A multiteam is a multiset X : X → N where X is a team. The
domain (codomain, resp.) of X is defined as the domain (codomain, resp.) of X.

For a multiset A, we define the canonical set representative [A]cset of A by

[A]cset := { (a, i) | a ∈ A, i ∈ N, 0 < i ≤ A(a) }.

192 A. Durand et al.

We say that a multiset A is a submultiset of a multiset B, and write A ⊆ B,
if and only if [A]cset ⊆ [B]cset. We write A = B if and only if both A ⊆ B and
B ⊆ A hold. The disjoint union A � B of A and B is the function A ∪ B → N

defined by

A � B(s) :=

⎧
⎪⎨

⎪⎩

A(s) + B(s) if s ∈ A and s ∈ B,

A(s) if s ∈ A and s �∈ B,

B(s) if s �∈ A and s ∈ B.

We write |A| to denote the size of A, i.e., |A| :=
∑

a∈A A(a). Let X be a
multiteam, A a finite set, and F : [X]cset → P(A) \ ∅ a function. We denote by
X [A/x] the modified multiteam defined as

⊎

s∈X

⊎

a∈A

{(
s(a/x),X (s)

)}.

By X [F/x] we denote the multiteam defined as
⊎

s∈X

⊎

1≤i≤X (s)

{(
s(b/x), 1

) | b ∈ F
(
(s, i)

)}.

A multiteam X over A is a multiteam with codomain A. We are now ready
to define multiteam semantics for first-order logic. In the semantical clauses
below, we use the lax semantics for existential quantifier and strict semantics for
disjunction as defined by Durand et. al. [3].

Definition 4 (Multiteam semantics). Let A be a τ -structure and X a mul-
titeam over A. The satisfaction relation |=X is defined as follows:

A |=X x = y ⇔ for all s ∈ X : if X (s) ≥ 1 then s(x) = s(y)
A |=X x �= y ⇔ for all s ∈ X : if X (s) ≥ 1 then s(x) �= s(y)
A |=X R(x) ⇔ for all s ∈ X : if X (s) ≥ 1 then s(x) ∈ RA

A |=X ¬R(x) ⇔ for all s ∈ X : if X (s) ≥ 1 then s(x) �∈ RA

A |=X (ψ ∧ θ) ⇔ A |=X ψ and A |=X θ
A |=X (ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ for some multisets

Y,Z ⊆ X s.t. X = Y � Z.
A |=X ∀xψ ⇔ A |=X [A/x] ψ
A |=X ∃xψ ⇔ A |=X [F/x] ψ holds for some function

F : [X]cset → P(A) \ ∅.
Using the counting measure, a multiteam X can be seen as a probability

distribution over X; let pX denote the distribution defined as follows:

pX (s) :=
X (s)

∑
t∈X X (t)

.

Conversely, every probability distribution p over a team X can be seen as a
class C(p) of multiteams with that distribution as its counting measure:

C(p) := {X | pX = p}.

Probabilistic Team Semantics 193

Teams in C(p) can be seen as discrete approximations of the probability dis-
tribution p. In the section below we abandon the discrete approach and device
team based logics that take probability distributions of teams as primitive. Intu-
itively, the semantics of these probabilistic logics is defined such that satisfaction
of formulae with respect to probabilistic teams and their large enough discrete
approximations coincide.

3.2 Probabilistic Teams

Let D be a finite set of variables, A a finite set, and X a finite set of assignments
from D to A. A probabilistic team X is a distribution X : X → Q[0,1]. We call
D and A the variable domain and value domain of X, respectively. Let A be a
τ -structure and X a probabilistic team such that the domain of A is the value
domain of X. Then we say that X is a probabilistic team of A. In the following,
we will define two notations X[A/x] and X[F/x], similar to X [A/x] and X [F/x]
of the previous section, in order to define the semantics of the universal and
existential quantification of variables. Their intuition is depicted in Fig. 1.

s0

s1

s2

si(a/x)

A → { 1
|A|}

A → { 1
|A|}

A → { 1
|A|}

s0

s1

s2

si(a/x)

F (s0)

F (s1)

F (s2)

Fig. 1. Intuition of universal quantification of x (i.e., the set X[A/x]) is depicted on
the left side. The intuition of existential quantification of x (i.e., the set X[F/x]) is
depicted of the right side. The height of a box labelled by an assignment corresponds
to the assignments probability. E.g., on left the probability of s0 is 1

3
whereas the

probability of s0(a/x) (for any a ∈ A) is 1
3|A| .

Let X : X → Q[0,1] be a probabilistic team, A a finite set, pA the set of all
probability distributions d : A → Q[0,1], and F : X → pA a function. We denote
by X[A/x] the probabilistic team X[A/x] → Q[0,1] such that

X[A/x](s(a/x)) =
∑

t∈X
t(a/x)=s(a/x)

X(t) · 1
|A| ,

for each a ∈ A and s ∈ X. Note that if x is a fresh variable then the righthand side
of the above equation is simply X(s) · 1

|A| . By X[F/x] we denote the probabilistic
team X[A/x] → Q[0,1] defined such that

194 A. Durand et al.

X[F/x](s(a/x)) =
∑

t∈X
t(a/x)=s(a/x)

X(t) · F (t)(a),

for each a ∈ A and s ∈ X. Again, if x is a fresh variable,
∑

can be dropped
from the above equation.

Let X : X → Q[0,1] and Y : Y → Q[0,1] be probabilistic teams with common
variable and value domains, and let k ∈ Q[0,1] be a rational number. We denote
by X �k Y the k-scaled union of X and Y, that is, the probabilistic team X �k

Y : X ∪ Y → Q[0,1] defined such that for each s ∈ X ∪ Y ,

(X �k Y)(s) :=

⎧
⎪⎨

⎪⎩

k · X(s) + (1 − k) · Y(s) if s ∈ X and s ∈ Y,

k · X(s) if s ∈ X and s /∈ Y,

(1 − k) · Y(s) if s ∈ Y and s /∈ X.

We may now define probabilistic team semantics for first-order formulae.

Definition 5. Let A be a probabilistic τ -structure over a finite domain A, and
X : X → Q[0,1] a probabilistic team of A. The satisfaction relation |=X for first-
order logic is defined as follows:

A |=X x = y ⇔ for all s ∈ X : if X(s) > 0, then s(x) = s(y)
A |=X x �= y ⇔ for all s ∈ X : if X(s) > 0, then s(x) �= s(y)
A |=X R(x) ⇔ for all s ∈ X : if X(s) > 0, then s(x) ∈ RA

A |=X ¬R(x) ⇔ for all s ∈ X : if X(s) > 0, then s(x) �∈ RA

A |=X (ψ ∧ θ) ⇔ A |=X ψ and A |=X θ
A |=X (ψ ∨ θ) ⇔ A |=Y ψ and A |=Z θ for some Y,Z, k s.t. Y �k Z = X

A |=X ∀xψ ⇔ A |=X[A/x] ψ
A |=X ∃xψ ⇔ A |=X[F/x] ψ holds for some F : X → pA.

Next we define the semantics of probabilistic atoms considered in this paper:
marginal identity and probabilistic independence atom. They were first intro-
duced in the context of multiteam semantics in [3]. We define |Xx=a | where x is
a tuple of variables and a a tuple of values, as the rational

|Xx=a | :=
∑

s(x)=a
s∈X

X(s).

If φ is some first-order formula, then |Xφ| is defined analogously as the total sum
of weights of those assignments in X that satisfy φ.

If x,y are variable sequences of length k, then x ≈ y is a marginal identity
atom with the following semantics:

A |=X x ≈ y ⇔ |Xx=a | = |Xy=a | for each a ∈ Ak (1)

Note that the equality |Xx=a | = |Xy=a | in (1) can be equivalently replaced with
|Xx=a | ≤ |Xy=a | since the tuples a range over Ak. Due to this alternative formu-
lation, marginal identity atoms were in [3] called probabilistic inclusion atoms.

Probabilistic Team Semantics 195

If x,y,z are variable sequences, then y ⊥⊥x z is a probabilistic conditional
independence atom with the satisfaction relation defined as

A |=X y ⊥⊥x z (2)

if for all s : Var(xyz) → A it holds that

|Xxy=s(xy)| · |Xxz=s(xz)| = |Xxyz=s(xyz)| · |Xx=s(x)|.
The logic FO(⊥⊥c,≈) is now defined as the extension of FO with marginal

identity and probabilistic conditional independence atoms. The following two
examples demonstrate the expressivity of FO(⊥⊥c,≈).

Example 3. The formula ∀yx ≈ y states that the probabilities for x are uni-
formly distributed over all value sequences of length |x|.
Example 4. We define a formula φ(x) := ∃αβψ(x, α, β) which expresses that the
weight of a predicate P (x) is at least two times that of a predicate Q(x) in a
probabilistic team over x. The subformula ψ in φ is given as

ψ := xα ≈ xβ ∧ α = 0 ↔ β �= 0 ∧ ∃γP γQθ(x, α, β, γP γQ), where (3)

θ :=
(
(P (x) ∧ α = 0) ↔ γP = 0

) ∧ Q(x) → γQ = 0 ∧ γP ≈ γQ (4)

Now A |=X φ(x) ⇐⇒ |XP (x)| ≥ 2 · |XQ(x)| for any X : X → Q[0,1] where α, β,
γP , and γQ are not in the variable domain of X. The first two conjuncts in (3)
indicate that the values of α must be chosen so that 1

2 · |YP (x)| = |YP (x)∧α=0|.
Where Y denotes the team obtained form X by evaluating the quantifiers ∃αβ.
The first conjunct in (4) implies that |ZP (x)∧α=0| = |ZγP=0| and the second that
|ZQ(x)| ≤ |ZγQ=0|, where Z is team obtained from Y by evaluating the quantifiers
∃γP γQ. The third conjunct in (4) then indicates that |ZγP=0| = |ZγQ=0|. Put
together, we have that

|XQ(x)| ∗= |ZQ(x)| ≤ |ZγQ=0| = |ZγP=0| = |ZP (x)∧α=0|
∗= |YP (x)∧α=0| =

1
2
|YP (x)| ∗=

1
2
|XP (x)|.

The equations ∗= follow from the fact that quantification of fresh variables do
not change the distribution of assignments with respect to the old variables.

Our next example relates probabilistic conditional independence atoms and
marginal identity atoms to Bayesian networks. A Bayesian network is a directed
acyclic graph whose nodes represent random variables and edges represent
dependency relations between these random variables. The applicability of
Bayesian networks is grounded in the notion of conditional independence as the
conditional independence relations encoded in the topology of such a network
enable a factorization of the underlying joint probability distribution. Next we
survey the possibility of refining Bayesian networks with information obtained
from FO(⊥⊥c,≈) formulae.

196 A. Durand et al.

Example 5. Consider the Bayesian network G in Fig. 2 that models beliefs about
house safety using four Boolean random variables. We note that the awakening
of guard or alarm is conditioned upon both the presence of thief and cat.
Furthermore, cat depends on thief, and guard and alarm are independent
given thief and cat. From the network we obtain that the joint probability
distribution for these variables can be factorized as

P (t, c, g, a) = P (t) · P (c | t) · P (g | t, c) · P (a | t, c) (5)

where, e.g., t abbreviates either thief = T or thief = F , and P (c | t) is the
probability of c given t. The joint probability distribution (i.e., a team X) can
hence be stored as in Fig. 2.

Let t, c, g, a now refer to random variables thief, cat, guard, alarm. The
dependence structure of a Bayesian network is characterized by the so-called
local directed Markov property stating that each variable is conditionally inde-
pendent of its non-descendants given its parents. For our network G the only
non-trivial independence given by this property is g ⊥⊥tc a. Hence a probabilistic
team X over t, c, g, a factorizes according to (5) iff X satisfies g ⊥⊥tc a. In this
situation knowledge on various FO(⊥⊥c,≈) formulae can further improve the
decomposition of the joint probability distribution. Assume we have information
suggesting that we may safely assume an FO(⊥⊥c,≈) formula φ on X:

– φ := t = F → g = F indicates that guard never raises alert in absence
of thief. In this case the two bottom rows of the conditional probability
distribution for guard become superfluous.

– φ := tca ≈ tcg indicates that alarm and guard have the same reliability for
any given value of thief and cat. Consequently, the conditional distributions
for alarm and guard are equal and one of the them can be removed.

– φ := ∃x(tcg ≈ tcx ∧ tcga ⊥⊥ y ∧ x = T ↔ ay = TT) entails that guard is of a
factor P (y = T) less sensitive to raise alert than alarm for any given thief

thief cat

guard alarm

thief

T F
0.1 0.9

cat

thief T F
T 0.1 0.9
F 0.6 0.4

guard

thief,cat T F
TT 0.8 0.2
TF 0.7 0.3
FT 0 1
FF 0 1

alarm

thief,cat T F
TT 0.9 0.1
TF 0.8 0.2
FT 0.1 0.9
FF 0 1

Fig. 2. Bayesian network G and its related conditional distributions

Probabilistic Team Semantics 197

and cat. The formula introduces a fresh free variable y, independent of any
random variable in G, and such that the probability of ay = TT equals the
probability of g = T given tc. The latter property is expressed by introducing
an auxiliary distribution for x. In this case it suffices to store the conditional
probability table for alarm and the probability P (y = T).

Next we connect probabilistic teams to multiteams. Denote by Prob the
mapping that transforms a multiteam to its corresponding probabilistic team,
i.e., given a multiteam X , Prob(X) is the probabilistic team X : X → Q[0,1] such
that

X(s) =
X (s)

∑
s′∈X X (s′)

.

It follows from the definitions that Prob preserves the truth condition for
marginal identity and probabilistic independence atoms.

Proposition 1. Let φ be a marginal identity or a probabilistic independence
atom, let X be a multiteam of a structure A, and let X be a probabilistic team of
A such that X = Prob(X). Then A |=X φ ⇐⇒ A |=X φ.

The restriction of a team X to V is defined as X � V = {s � V | s ∈ X}
where s � V denotes the restriction of the assignment s to V . The restriction
of a probabilistic team X to V is then defined as the probabilistic team Q : X �
V → Q[0,1] where

Q(s) =
∑

s′�V =s

P (s′).

The following locality property indicates that satisfaction of φ ∈ FO(⊥⊥c,≈) is
determined by the restriction of a probabilistic team to the free variables of φ.
The set of free variables Fr(φ) of a formula φ ∈ FO(⊥⊥c,≈) is defined recursively
as in first-order logic with the addition that for probabilistic independence and
marginal identity atoms φ, Fr(φ) consists of all variables that appear in φ.

Proposition 2 (Locality). Let φ(x) ∈ FO(⊥⊥c,≈) be a formula with free vari-
ables from x = (x1, . . . , xn). Then for all structures A and probabilistic teams
X : X → Q[0,1] where {x1, . . . , xn} ⊆ V ⊆ Dom(X), A |=X φ ⇐⇒ A |=X�V φ.

Proof. For first-order atoms the claim is immediate. Furthermore, it is easy to
check that the same holds for the atoms x ≈ y and y ⊥⊥x z (for multiteam
semantics this has been discussed in [3]).

Assume then that φ := ψ ∨ θ, and that the claim holds for ψ and θ. Note
first that for any probabilistic teams X and Y with common variable and value
domains a simple calculation shows that

(X �k Y) � V = X � V �k Y � V. (6)

Suppose that A |=X φ. Then there are k, Y, and Z such that X = Y �k Z,
A |=Y ψ, and A |=Z θ. By the induction assumption, it holds that A |=Y�V ψ
and A |=Z�V θ. Now by (6), A |=X�V φ. The converse implication is proved
analogously. The proof is similar for the cases φ := ∃xψ and φ := ∀xψ. ��

198 A. Durand et al.

4 Translation from FO(⊥⊥c,≈) to ESOfQ

In this section, we show that any formula in FO(⊥⊥c,≈) can be equivalently
expressed as a sentence of ESOfQ that has exactly one free function variable for
encoding probabilistic teams. The following lemma will be used to facilitate the
translation. This lemma has been shown by Durand et al. [3] for multiteams
and accordingly, by Proposition 1, it holds for probabilistic teams as well. The
lemma entails that each probabilistic independence atom in φ ∈ FO(⊥⊥c,≈) can
be assumed to be either of the form y ⊥⊥x z or of the form y ⊥⊥x y for pairwise
disjoint tuples x,y,z.

Lemma 1 [3]. Let A be a structure and X a probabilistic team over A. Then

(i) A |=X y ⊥⊥x z ⇔ A |=X

(
y \ x ⊥⊥x z \ x

)
,

(ii) A |=X y ⊥⊥x z ⇔ A |=X

(
y \ z ⊥⊥x z \ y

) ∧ (
y ∩ z ⊥⊥x y ∩ z

)
.

Theorem 1. For every formula φ(x) ∈ FO(⊥⊥c,≈) with free variables from
x = (x1, . . . , xn) there exists a formula φ∗(f) ∈ ESOfQ with exactly one free
function variable f such that for all structures A and nonempty probabilistic
teams X : X → Q[0,1],

A |=X φ(x) ⇐⇒ (A, fX) |= φ∗(f),

where fX : An → Q[0,1] is the probability distribution such that fX(s(x)) = X(s)
for all s ∈ X.

Proof. We give a compositional translation ∗ from FO(⊥⊥c,≈) to ESOfQ. For
a subsequence xi of x, we denote by xc

i a sequence x \ xi, and by x(y/xi) a
sequence obtained from x by replacing xi pointwise with y.

If φ(x) is of the form R(x0), then φ∗(f) := ∀x(
f(x) = 0 ∨ R(x0)

)
.

If φ(x) is of the form ¬R(x0), then φ∗(f) := ∀x(
f(x) = 0 ∨ ¬R(x0)

)
.

If φ(x) is x0 ≈ x1, then φ∗(f) := ∀z SUMxc
0
f(x(z/x0)) = SUMxc

1
f(x(z/x1)).

If φ(x) is x1 ⊥⊥x0 x2 where x0,x1,x2 are disjoint, then φ∗(f) := ∀x0x1x2

SUM(x0x1)cf(x) × SUM(x0x2)cf(x) = SUM(x0x1x2)cf(x) × SUMxc
0
f(x).

If φ(x) is of the form x1 ⊥⊥x0 x1 where x0,x1 are disjoint, then

φ∗(f) := ∀x0x1

(
SUM(x0x1)cf(x) = 0 ∨ SUM(x0x1)cf(x) = SUMxc

0
f(x)

)
.

If φ(x) is of the form ψ0(x) ∧ ψ1(x), then φ∗(f) := ψ∗
0(f) ∧ ψ∗

1(f).
If φ(x) is of the form ψ0(x) ∨ ψ1(x), then φ∗(f) := ψ∗

0(f) ∨ ψ∗
1(f)

∨
(
∃pghk

(∀x∀y(y = l ∨ y = r ∨ (p(y) = 0 ∧ k(x, y) = 0)) (7)

∧ ∀x(k(x, l) = g(x) × p(l) ∧ k(x, r) = h(x) × p(r)) (8)

∧ ∀x (SUMyk(x, y) = f(x)) ∧ ψ∗
0(g) ∧ ψ∗

1(h)
))

. (9)

Probabilistic Team Semantics 199

If φ(x) is ∃yψ(x, y), then φ∗(f) := ∃g
(
(∀xSUMyg(x, y) = f(x)) ∧ ψ∗(g)

)
.

If φ(x) is of the form ∀yψ(x, y), then φ∗(f) :=

∃g
(∀x(∀y∀zg(x, y) = g(x, z) ∧ SUMyg(x, y) = f(x)) ∧ ψ∗(g)

)
.

The claim now follows via a straightforward induction on the structure of the
formula. The cases for first-order and dependency atoms, and likewise for con-
junctions, follow directly from the semantical clauses.

The case for disjunctions requires a bit more care. First note that l (left) and
r (right) denote distinct constant symbols than can be defined by ∃l∃r l �= r in
the beginning of the translation ∗. Recall that a probabilistic team X satisfies
a disjunction (φ ∨ ψ) if and only if X satisfies either φ or ψ, or there exists
two nonempty probabilistic teams Y and Z and a ratio q ∈ Q[0,1] such that
Y satisfies φ, Z satisfies ψ, and, for each assignment s, it holds that X(s) =
q ·Y(s) + (1 − q) · Z(s). In the translation, we encode the value of q by p(l) and
(1 − q) by p(r). Line (7) expresses that p is such a function. We use k(s(x), l)
and k(s(x), r) to encode the values of q · Y(s) and (1 − q) · Z(s), respectively.
Lines (7) and (8) together express that k is such a function. Finally, the first
part of line (9) expresses that ∀s : X(s) = q · Y(s) + (1 − q) · Z(s), whereas the
latter part expresses that Y satisfies φ, Z satisfies ψ.

The cases for the quantifiers follow directly by the semantical clauses. ��

5 Translation from ESOfQ to FO(⊥⊥c,≈)

In this section, we construct a translation from ESOfQ to FO(⊥⊥c,≈). The proof
utilises the observation that independence atoms and marginal identity atoms
can be used to express multiplication and SUM in Q[0,1], respectively. The
translation then relates ESOfQ sentences in a certain normal form, presented
in Lemma 3, to open FO(⊥⊥c,≈) formulae. Before this, we start by stating a
lemma which expresses that existential quantification of a constant probability
distribution d can be characterised in FO(⊥⊥c,≈). Given a probabilistic team
X : X → Q[0,1], a tuple x = (x1, . . . , xn) of fresh variables, and a probability dis-
tribution d : An → Q[0,1], we denote by X[d/x] the probabilistic team Y where
Y(s(a/x)) = X(s) · d(a) for all s ∈ X.

Lemma 2. Let φ(x) := ∃y(x ⊥⊥ y ∧ψ(x,y)) be a FO(⊥⊥c,≈)-formula with free
variables from x = (x1, . . . , xn). Then for all structures A and probabilistic teams
X : X → Q[0,1] where {x1, . . . , xn} ⊆ Dom(X),

A |=X φ ⇐⇒ A |=X[d/y] ψ for some d : A|y | → Q[0,1].

Proof. By the locality principle (Proposition 2) A |=X φ if and only if
A |=X�{x1,...,xn} φ. Likewise it is straightforward to check that, for d : A|y | →
Q[0,1]

A |=X[d/y] ψ if and only if A |=X�{x1,...,xn}[d/y] ψ,

since X[d/y] � {x1, . . . , xn,y} = X � {x1, . . . , xn}[d/y]. Accordingly, we may
assume without loss of generality, that Dom(X) = {x1, . . . , xn}.

200 A. Durand et al.

Now A |=X φ iff there is a function F : X → pA such that A |=Y x ⊥⊥ y ∧
ψ(x,y) where Y := X[F/y]. Furthermore,

A |=Y x ⊥⊥ y iff |Yxy=s(x)a | = |Yx=s(x)| · |Yy=a | for all s ∈ X and a ∈ An.

Since Dom(X) = {x1, . . . , xn}, the right-hand side of the above is equivalent to

X(s) · F (s)(a) = X(s) · |Yy=a | for all s ∈ X and a ∈ An.

This is equivalent with saying that X[F/y] = X[d/y] for some distribution
d : An → Q[0,1]. ��

Before proceeding to the translation, we construct the following normal form
for ESOfQ sentences.

Lemma 3. Every ESOfQ sentence φ is equivalent to a sentence φ∗ of the form
∃f∀xθ, where θ is quantifier-free and such that its second sort identity atoms
are of the form fi(uv) = fj(u) × fk(v) or fi(u) = SUMvfj(uv) for distinct
fi, fj , fk such that at most one of them is not quantified.

Proof. First we define for each second sort term i(x) a special formula θi defined
recursively using fresh function symbols fi as follows:

– If i(u) is g(u) where g is a function symbol, then θi is defined as fi(u) = g(u).
(We may intepret g(u) as SUM∅g(u)).

– If i(uv) is j(u) × k(v), then θi is defined as θj ∧ θk ∧ fi(uv) = fj(u) × fk(v).
– If i(u) is SUMv j(uv), then θi is defined as θj ∧ fi(u) = SUMvfj(uv).

The translation φ �→ φ∗ then proceeds recursively on the structure of φ.

(i) If φ is i(u) = j(v), then φ∗ is defined as ∃f(fi(u) = fj(v)∧θi∧θj) where f is
lists the function symbols fk for each subterm k of i or j. If φ is i(u) �= j(v),
the translation is analogous.

(ii) If φ is an atom or negated atom of the first sort, then φ∗ := φ.
(iii) If φ is ψ0 ◦ ψ1 where ◦ ∈ {∨,∧}, ψ∗

0 is ∃f0∀x0θ0, and ψ∗
1 is ∃f1∀x1θ1, then

φ∗
1 is defined as ∃f0f1∀x0x1(θ0 ◦ θ1).

(iv) If φ is ∃yψ where ψ∗ is ∃f∀xθ, then φ∗ is defined as ∃g∃f∀x∀y(g(y) = 0∨θ).
(v) If φ is ∀yψ where ψ∗ is ∃f∀xθ, then φ∗ is defined as

∃f∗∃f id∃d∀yy′∀x(d(y) = d(y′) ∧
∧

f∗∈f ∗
SUMxf∗(y,x) = d(y) ∧ θ∗)

where f∗ is obtained from f by replacing each f from f with f∗ such that
ar(f∗) = ar(f)+1, f id introduces new function symbol for each multiplica-
tion in θ, and θ∗ is obtained by replacing all second sort identities α of the
form fi(uv) = fj(u) × fk(v) with

fα(y,uv) = d(y) × f∗
i (y,uv) ∧ fα(y,uv) = f∗

j (y,u) × f∗
k (y,v)

and fi(u) = SUMvfj(uv) with f∗
i (y,u) = SUMvf∗

j (y,uv)

Probabilistic Team Semantics 201

(vi) If φ is ∃fψ where ψ∗ is ∃f∀xθ, then φ∗ is defined as ∃fψ∗.

It is straightforward to check that φ∗ is of the correct form and equivalent to φ.
What happens in (v) is that instead of guessing for all y some distribution fy

with arity ar(f), we guess a single distribution f∗ with arity ar(f) + 1 such that
f∗(y,u) = 1

|A| · fy(u) where A is the underlying domain of the structure. This is
described by the existential quantification of a unary uniform distribution d such
that for all fixed y, SUMuf∗(y,u) is d(y). Then note that fy(u) = gy(u′)·hy(u′′)
iff 1

|A| · f∗(y,u) = g∗(y,u′) · h∗(y,u′′) iff d(y) · f∗(y,u) = g∗(y,u′) · h∗(y,u′′).
For identities over SUM, the reasoning is analogous. ��
Theorem 2. Let φ(p) ∈ ESOfQ be a sentence of the form ∃f∀xθ where θ is a
quantifier-free FOfQ formula in which each second sort equality atom is of the
form fi(xi) = fj(xj)×fk(xk) or fi(xi) = SUMxk

fj(xkxj) for distinct fi, fj , fk

from {f1, . . . , fn} ∪ {p}. Then there is a formula Φ ∈ FO(⊥⊥c,≈) such that for
all structures A and probabilistic teams X := pA,

A |=X Φ ⇐⇒ (A, p) |= φ.

Proof. We define Φ as
Φ := ∀x∃y1 . . .yn(Θ ∧ Ψ)

where x = (x1, . . . , xm), yi are sequences of variables of length ar(fi), Θ is a
compositional translation from θ, and

Ψ :=
n∧

i=1

xy1 . . .yi−1 ⊥⊥ yi. (10)

By Lemma 2 it suffices to show that for all distributions f1, . . . , fn, subsets M ⊆
Am, and probabilistic teams Y = X[M/x][f1/y1] . . . [fn/yn],

A |=Y Θ iff (A, p, f1, . . . , fn) |= θ(a) for all a ∈ M. (11)

We show the claim by structural induction on the construction of Θ.

1. If θ is an atom of the first sort, it clearly suffices to let Θ = θ.
2. Assume θ is of the form fi(xi) = fj(xj) × fk(xk). Then Θ is defined as

Θ := ∃αβ
(
(α = 0 ↔ xi = yi) ∧ (β = 0 ↔ xjxk = yjyk) ∧ xα ≈ xβ)

)
.

Assume that (A, p, f1, . . . , fn) |= θ(a) for any given a ∈ M . Then we have
fi(ai) = fj(aj) · fk(ak). We define functions Fα, Fβ : Y → {0, 1} so that
Fα(s) = 0 iff s(xi) = s(yi), and Fβ(s) = 0 iff s(xjxk) = s(xjxk). It suffices
to show that A |=Z xα ≈ xβ where Z = Y[Fα/α][Fβ/β]. By the construction
of Z, we have |Zxα=a0| = |Zxy i=aai

| = |Yx=a |·fi(ai). Similarly, and using the
hypothesis, we have |Zxβ=a0| = |Zxyjyk=aajak

| = |Yx=a | · fj(aj) · fk(ak) =
|Yx=a | ·fi(ai). Furthermore, since we have |Zxα=a1| = |Yx=a | · (1−fi(ai)) =
|Zxβ=a1|, it follows that A |=Y Θ.

202 A. Durand et al.

Assume A |=Y Θ, and let Z be the extension of Y to α, β where Zα=0 =
Zxi=y i

and Zβ=0 = Zxjxk=yjyk
. Then A |=Z xα ≈ xβ since |Yx=a | ·fi(ai) =

|Yx=a | · |Yy i=ai
| = |Yxy i=aai

| = |Yxxi=ay i
| = |Zxα=a0| = |Zxβ=a0| =

|Yxxjxk=ayjyk
| = |Yxyjyk=aajak

| = |Yx=a | · |Yy j=aj
| · |Yyk=ak

| = |Yx=a | ·
fj(aj) · fk(ak) for all a ∈ M .

3. Assume θ is of the form fi(xi) = SUMxk
fj(xkxj). We define Θ as

Θ := ∃αβ
(
(α = 0 ↔ xi = yi) ∧ (β = 0 ↔ xj = yj) ∧ xα ≈ xβ

)
.

Assume that (A, p, f1, . . . , fn) |= θ(a) for any given a ∈ M . Then fi(ai) =
SUMxk

fj(xkxj). We define functions Fα, Fβ : Y → {0, 1} such that Fα(s) = 0
iff s(xi) = s(yi), and Fβ(s) = 0 iff s(xj) = s(yj). Then A |=Z xα ≈ xβ
because |Zxα=a0| = |Yxxi=ay i

| = |Yxy i=aai
| = |Yx=a | · fi(ai) = |Yx=a | ·

SUMxk
fj(xkaj) = |Yx=a | · |Yyj=aj

| = |Yxyj=aaj
| = |Yxxj=ayj

| = |Zxβ=a0|.
Furthermore, since |Zxα=a1| = |Zxβ=a1| it follows that A |=Y Θ.
Assume that A |=Y Θ, and let Z be the extension of Y to α, β where Zα=0 =
Zxi=y i

and Zβ=0 = Zxj=yj
. Analogously to the previous case, we obtain

A |=Z xα ≈ xβ since |Yx=a | · fi(ai) = |Zxα=a0| = |Zxβ=a0| = |Yxyj=aaj
| =

|Yx=a | · |Yyj=aj
| = |Yx=a | · SUMxk

fj(aj) for all a ∈ M .
4. Assume θ is θ0 ∧ θ1. Then we let Θ := Θ0 ∧ Θ1, and the claim follows by a

straightforward argument.
5. Assume θ is θ0 ∨ θ1. Then we let

Θ := ∃z
(
z ⊥⊥x z ∧ (Θ0 ∧ z = 0) ∨ (Θ1 ∧ ¬z = 0)

)
.

Assume (A, p, f1, . . . , fn) |= θ0∨θ1 for all a ∈ M . Then we find M0∪M1 = M ,
M0 ∩ M1 = ∅, such that (A, p, f1, . . . , fn) |= θi for all a ∈ Mi. We define
F : Y → pA so that Fz(s) = ci if s(x) ∈ Mi; by ci we denote the distribution

ci(a) :=

{
1 if a = i,

0 otherwise.

Letting Zi = X[Mi/x][f1/y1] . . . [fn/yn][ci/z], it follows that Z = Y[F/z] =
Z0�kZ1 for k = M0

M . By the induction hypothesis A |=Zi
Θi, and accordingly

A |=Zi
Θ0 ∧ zi. Since A |=Z z ⊥⊥x z, we obtain by Proposition 2 that A |=Y

Θ. Assume A |=Y Θ, and let F : Y → pA be such that A |=Z z ⊥⊥x z∧((Θ0∧
z = 0)∨ (Θ1 ∧¬z = 0)) for Z = Y[F/z]. Consequently, A |=Z′

0
Θ0 and A |=Z′

1

Θ1 where kZ′
0 = Zz=0 and (1 − k)Z′

1 = Zz=1 for k = |Zz=0|. Since Z satisfies
z ⊥⊥x z, we have furthermore that either Zx=a = Zxz=a0 or Zx=a = Zxz=a1

for all a ∈ M . This entails that Zz=0 = Zx∈M0 for some M0 ⊆ M . Therefore,
Z

′
0 = |M |

|M0| (X[M/x][f1/y1] . . . [fn/yn])x∈M0 = X[M0/x][f1/y1] . . . [fn/yn]. By
the induction hypothesis, we then obtain (A, p, f1, . . . , fn) |= θ0 for all a ∈
M0, and by analogous reasoning that (A, p, f1, . . . , fn) |= θ1 for all a ∈
M \ M0. Consequently, (A, p, f1, . . . , fn) |= θ for all a ∈ M which concludes
the proof. ��

Probabilistic Team Semantics 203

6 Complexity of FO(≈) in Multiteams vs. Probabilistic
Teams

One of the fundamental results in logics in team semantics state that, in contrast
to dependence and independence logics that correspond to existential second-
order logic (accordingly, NP), the expressivity of inclusion logic equals only that
of positive greatest fixed-point logic and thus PTIME over finite ordered mod-
els [6,7,20]. In this section, we consider the complexity of FO(≈) that can be
thought of as a probabilistic variant of inclusion logic. We present a formula
φ ∈ FO(≈) which captures an NP-complete property of multiteams (the example
works under both strict and lax semantics introduced by Durand et al. [3]). The
possibility of expressing similar properties in probabilistic teams is left open. It
is worth noting that our reduction is similar to the ones presented for quantifier-
free dependence and independence logic formulae under team semantics [2,17]
(see also the recent survey on complexity aspects of logics in team semantics [4]).

The following example relates FO(≈) to the exact cover problem, a well-
known NP-complete problem [9]. Given a collection S of subsets of a set A, an
exact cover is a subcollection S∗ of S such that each element in A is contained
in exactly one subset in S∗.

Multiteam X
element set left right X (s)

0 S1 1 2 1
0 S1 2 3 1
0 S1 3 1 1
0 S2 2 2 1
0 S3 1 3 1
0 S3 3 4 1
0 S3 4 1 1
1 0 0 0 1
2 0 0 0 1
3 0 0 0 1
4 0 0 0 1

Probabilistic team X

element set left right X(s) Y Z

0 S1 1 2 1/10 1/2 1/2
0 S1 2 1 1/10 1/2 1/2
0 S2 2 3 1/10 1/2 1/2
0 S2 3 2 1/10 1/2 1/2
0 S3 3 1 1/10 1/2 1/2
0 S3 1 3 1/10 1/2 1/2
1 0 0 0 1/10 1
2 0 0 0 1/10 1
3 0 0 0 1/10 1
4 0 0 0 1/10 1

Fig. 3. A multiteam X and a probabilistic team X

Example 6. Consider an exact cover problem over A = {1, 2, 3, 4} and S = {S1 =
{1, 2, 3}, S2 = {2}, S4 = {1, 3, 4}}. We construct a multiteam X as follows. The
multiteam X , depicted in Fig. 3, is a constant function mapping all assignments
to 1. For each element i of a subset Sj , we create an assignment that maps
element to 0, set to sj , left to i, and right to the next element in Sj (under
some ordering). Also, if Sj = {i}, then right is mapped to i. In our example
case these assignments appear above the solid line of the multiteam X in Fig. 3.
Furthermore, for each element i of A we create an assignment that maps element

204 A. Durand et al.

to i and all other variables to 0. The answer to the exact cover problem is then
positive iff X satisfies

φ := set �= 0 ∨ (element ≈ left ∧ set, right ≈ set, left). (12)

Note that since φ consists only of variables and connectives, we do not need to
concern structures; we write X |= φ instead of A |=X φ. Now X |= φ if and
only if Z |= set �= 0 and Y |= element ≈ left ∧ set, right ≈ set, left, for
some Z, Y such that Z �Y = X . Note that any subset of the assignments above
the solid line in Fig. 3 satisfy set �= 0 and could be a priori assigned to Z. Note
also that all of the assignments below the solid line must be assigned to the team
Y. Henceforth, the conjunct element ≈ left forces to select assignments from
above the solid line to Y exactly one assignment for each element of A. Then
set, right ≈ set, left enforces that this selection either subsumes a subset Si

or does not intersect it at all. In the example case, we can select the segments
that corresponds to sets S1 and S2.

The same reduction does not work for probabilistic teams. The probabilistic
team X in Fig. 3 corresponds to the exact cover problem defined over A = {1, 2, 3}
and S = {S1 = {1, 2}, S2 = {2, 3}, S4 = {3, 1}}. This instance does not admit
an exact cover. However, for satisfaction of (12) by X, taking half weights of the
upper part for Y and all the remaining weights for Z, we have A |=Y set �= 0 and
A |=Z element ≈ left ∧ set, right ≈ set, left where X = Y �k Z for k = 3

10 .

It is straightforward to generalise the previous example to obtain the follow-
ing result.

Corollary 1. Data complexity of the quantifier-free fragment of FO(≈) under
multiteam semantics is NP-hard. This remains true for very simple fragments
as set �= 0 ∨ (element ≈ left ∧ set, right ≈ set, left) is such a formula for
which model checking is hard for NP.

The obvious brute force algorithm gives inclusion to NP.

Theorem 3. Data complexities of FO(≈) and the quantifier-free fragment of
FO(≈) under multiteam semantics are NP-complete.

7 Conclusion

In this article, we have initiated a systematic study of probabilistic team seman-
tics. Some features of our semantics have been discussed in the literature but
the logic FO(⊥⊥c,≈) has not been studied before in the probabilistic framework.
Probabilistic logics with team semantics have already been applied in the context
of so-called Bell’s Inequalities of quantum mechanics [15]. On the other hand, our
work is in part motivated by the study of implication problems of database and
probabilistic dependencies. Independence logic has recently been used to give a
finite axiomatisation for the implication problem of independence atoms (i.e.,
EMVD’s) and inclusion dependencies [12]. It is an interesting open question to
apply our probabilistic logic to analyse the implication problem of conditional
independence statements whose exact complexity is still open [11,21].

Probabilistic Team Semantics 205

Acknowledgements. The second author was supported by grant 3711702 of the
Marsden Fund. The third author was supported by grant 308712 of the Academy of
Finland. This work was supported in part by the joint grant by the DAAD (57348395)
and the Academy of Finland (308099). We also thank the anonymous referees for their
helpful suggestions.

References

1. Corander, J., Hyttinen, A., Kontinen, J., Pensar, J., Väänänen, J.: A logical app-
roach to context-specific independence. In: Väänänen, J., Hirvonen, Å., de Queiroz,
R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 165–182. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-52921-8 11

2. Durand, A., Kontinen, J., de Rugy-Altherre, N., Väänänen, J.: Tractability frontier
of data complexity in team semantics. In: Proceedings of GandALF 2015 (2015)

3. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Approximation
and dependence via multiteam semantics. In: Gyssens, M., Simari, G. (eds.) FoIKS
2016. LNCS, vol. 9616, pp. 271–291. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-30024-5 15

4. Durand, A., Kontinen, J., Vollmer, H.: Expressivity and complexity of dependence
logic. In: Abramsky, S., Kontinen, J., Väänänen, J., Vollmer, H. (eds.) Dependence
Logic: Theory and Applications, pp. 5–32. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-31803-5 2

5. Galliani, P.: Probabilistic dependence logic. Manuscript (2008)
6. Galliani, P.: Inclusion and exclusion dependencies in team semantics - on some

logics of imperfect information. Ann. Pure Appl. Log. 163(1), 68–84 (2012)
7. Galliani, P., Hella, L.: Inclusion logic and fixed point logic. In: Proceedings of the

CSL, pp. 281–295 (2013)
8. Galliani, P., Mann, A.L.: Lottery semantics: a compositional semantics for prob-

abilistic first-order logic with imperfect information. Stud. Log. 101(2), 293–322
(2013)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

10. Grädel, E., Väänänen, J.A.: Dependence and independence. Stud. Log. 101(2),
399–410 (2013)

11. Gyssens, M., Niepert, M., Gucht, D.V.: On the completeness of the semigraphoid
axioms for deriving arbitrary from saturated conditional independence statements.
Inf. Process. Lett. 114(11), 628–633 (2014)

12. Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence
and inclusion dependencies. Inf. Comput. 249, 121–137 (2016)

13. Hannula, M., Kontinen, J., Link, S.: On the finite and general implication problems
of independence atoms and keys. J. Comput. Syst. Sci. 82(5), 856–877 (2016)

14. Hodges, W.: Compositional semantics for a language of imperfect information. Log.
J. IGPL 5(4), 539–563 (1997). Electronic

15. Hyttinen, T., Paolini, G., Väänänen, J.: Quantum team logic and Bell’s inequali-
ties. Rev. Symb. Log., 1–21 (2015). FirstView

16. Hyttinen, T., Paolini, G., Väänänen, J.: A logic for arguing about probabilities in
measure teams. Arch. Math. Log. 56(5–6), 475–489 (2017)

17. Kontinen, J.: Coherence and computational complexity of quantifier-free depen-
dence logic formulas. Stud. Log. 101(2), 267–291 (2013)

https://doi.org/10.1007/978-3-662-52921-8_11
https://doi.org/10.1007/978-3-319-30024-5_15
https://doi.org/10.1007/978-3-319-30024-5_15
https://doi.org/10.1007/978-3-319-31803-5_2
https://doi.org/10.1007/978-3-319-31803-5_2

206 A. Durand et al.

18. Kontinen, J., Link, S., Väänänen, J.: Independence in database relations. In:
Libkin, L., Kohlenbach, U., de Queiroz, R. (eds.) WoLLIC 2013. LNCS, vol.
8071, pp. 179–193. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39992-3 17

19. Sevenster, M., Sandu, G.: Equilibrium semantics of languages of imperfect infor-
mation. Ann. Pure Appl. Log. 161(5), 618–631 (2010)

20. Väänänen, J.: Dependence Logic - A New Approach to Independence Friendly
Logic. London Mathematical Society Student Texts, vol. 70. Cambridge University
Press, Cambridge (2007)

21. Wong, S.K.M., Butz, C.J., Wu, D.: On the implication problem for probabilistic
conditional independency. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
30(6), 785–805 (2000)

https://doi.org/10.1007/978-3-642-39992-3_17
https://doi.org/10.1007/978-3-642-39992-3_17

Strategic Dialogical Argumentation
Using Multi-criteria Decision Making

with Application to Epistemic
and Emotional Aspects of Arguments

Emmanuel Hadoux1(B), Anthony Hunter1, and Jean-Baptiste Corrégé2

1 Department of Computer Science, University College London, London, UK
{e.hadoux,anthony.hunter}@ucl.ac.uk

2 LIMSI, CNRS, Université Paris-Saclay, 91405 Orsay, France
jean-baptiste.correge@limsi.fr

Abstract. Participants in dialogical argumentation often make strate-
gic choices of move, for example to maximize the probability that they
will persuade the other opponents. Multiple dimensions of information
about the other agents (e.g., the belief and likely emotional response
that the other agents might have in the arguments) might be used to
make this strategic choice. To support this, we present a framework with
implementation for multi-criteria decision making for strategic argumen-
tation. We provide methods to improve the computational viability of
the framework, and analyze these methods theoretically and empirically.
We finally present decision rules supported by the psychology literature
and evidence using human experiments.

1 Introduction

In dialogical argumentation, a proponent can use strategic choices of argument
when arguing with an opponent. In particular, when the number of moves is lim-
ited, the proponent needs to choose arguments that are more likely to be effective
rather than exhaustively presenting all arguments. Consider for example, a doc-
tor trying to persuade a patient to give up smoking. The doctor cannot expect
the patient to have a discussion with hundreds of arguments and counterargu-
ments being presented. Rather, the doctor has to think of what arguments and
counterargument the patient believes, what arguments may have an emotional
impact on the patient, etc., and then the doctor has to choose a line of argu-
mentation that may be concluded with a relatively small number of arguments
being presented by either side.

Most proposals for dialogical argumentation focus on protocols (e.g., [1–4])
with strategies being under-developed. See [5] for a review of strategies in multi-
agent argumentation. Strategies in argumentation have been analyzed using
game theory (e.g., [6,7]), but these are more concerned with issues of manip-
ulation rather than persuasion. There are also proposals for using probability
c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 207–224, 2018.
https://doi.org/10.1007/978-3-319-90050-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_12&domain=pdf

208 E. Hadoux et al.

theory to, for instance, select a move based on what an agent believes the other
is aware of [8], or, approximately predict the argument an opponent might put
forward based on an history [9]. The problem can also be viewed as a probabilis-
tic finite state machine, and generalized to POMDPs when there is uncertainty
on the internal state of the opponent [10]. In [11], a planning system is used by
the persuader to optimize choice of arguments based on belief in premises. But,
none of these developments have systematically harnessed established notions in
decision theory for maximizing the outcome of a dialogue.

To address this, Hadoux and Hunter [12] propose a general framework for
representing persuasion dialogues as a decision tree, and for using decision rules
such as MaxiMin for selecting moves. This is useful if we can focus on one dimen-
sion for modelling a user, such as her belief in the arguments, but it does not
allow us to take into account multiple dimensions, and yet, multiple dimensions
are often desirable. For instance, a user may want to maximize both the belief
and appeal in an argument. In this paper, we will present a general framework
for representing persuasion dialogues as a decision tree, and use multi-criteria
decision making for computing an optimal policy. We will illustrate the use
of these multiple dimensions by considering belief in arguments, and the emo-
tional response evoked by arguments. For the latter, we draw on an established
results from psychology for modelling emotional response in terms of valence
(i.e., polarity), arousal (i.e., intensity) and dominance (i.e., degree of feeling in
control) invoked by an argument.

We proceed as follows: we review basic definitions for dialogical argumenta-
tion in Sect. 2; then in Sect. 3 we take emotional effect of arguments into account.
We review decision trees and multi-criteria decision making for modelling argu-
mentation dialogues in Sect. 4. We instanciate the multi-criteria decision mak-
ing theory on multi-dimensional problems with emotions in Sect. 5. In Sect. 6
we specify size-reduction features to improve space efficiency and present some
theoretical results concerning them. Sections 7 and 8 present both computa-
tional empirical results concerning the implementation and results on human
experiments to validate our choice of decision rules. Finally, we discuss our con-
tributions in Sect. 9.

2 Preliminaries

A persuader (the proponent) has a dialogue with a persuadee (the opponent) to
make her believe (or disbelieve) some combination of arguments as a goal (e.g.,
to do more exercise or to eat healthier food). We see that normally getting a
persuadee to believe arguments is a prerequisite in the persuasion process.

For the sake of simplicity, in this paper, we deal with two agents and a
singleton persuasion goal (i.e., an individual argument as goal). However, our
work can be extended to more agents and goals as long as only one persuader is
involved. Building upon Dung’s [13] abstract argumentation, a dialogue concerns
an argument graph G without self-attacks where Args(G) is the set of arguments
in G, and Attacks(G) is the set of attack relations in G. We do not consider self-
attacks in this work as we are concerned with applications where we assume

Strategic Dialogical Argumentation Using Multi-criteria Decision 209

participants do not present self-contradictory statements. For real applications,
this restriction is often not important.

More formally, a persuasion dialogue is a sequence of moves D =
[m1, . . . ,mh]. In this work, a move consists in positing an argument A ∈ Args(G).
The attacks to and from this argument in relation to the arguments already
posited come from the original graph. The parameter h is the horizon of the
debate, i.e., the maximum number of moves that can be played. It is justified
by the need to keep the persuadee engaged. A shorter debate (i.e., a smaller
value for h) gives more chance to keep the persuadee in the debate until the end.
However, it also lowers the number of ways to make a valid point.

Each odd (resp. even) move in the dialogue is a persuader (resp. persuadee)
move. However, the persuadee moves are played with respect to the arguments
she believes, in reaction to the persuader positing an argument. Therefore, an
efficient strategy needs to take into account the possible subsets of arguments
the persuadee believes. Indeed, an agent is unlikely to posit arguments she does
not have faith in. To that end, the persuader keeps and updates a belief model of
the persuadee and uses it in her decision process. We use the epistemic approach
to probabilistic argumentation [14–17], defining a model as an assignment in the
unit interval to each argument where for an argument A, B(A) > 0.5 represents
A is believed to some degree, B(A) = 0.5 represents A is neither believed nor
disbelieved, and B(A) < 0.5 represents A is disbelieved to some degree.

3 Taking Emotion into Account

In addition to belief, the emotions invoked by arguments are important to take
into account since they affect the way the argument is perceived by the per-
suadee. Emotions are the result of how an individual appraises a stimulus [18].
According to [19], appraisal is a cognitive process composed of a number of
checks aimed at categorizing a stimulus: is it relevant, what does it imply, do I
have the potential to cope and is it socially significant?

This process and the various patterns of checks generate different cognitive
responses and coping strategies. These strategies in turn affect the way infor-
mation is processed [20]. For example, guilt leads to the use of active strategies
focused on repairing the wrong made, whereas shame leads to the use of more
passive strategies focused on the self. Combined with gain-loss framing [21], the
emotion conveyed by an argument can be used to increase the persuasiveness
of this argument. Duhachek et al. [20] developed a study in which they tested
different argument configurations, varying the emotional tone of the argument
(guilt v. shame) and the framing of the argument (gain v. loss). The results
showed that a positively-framed message associated with guilt (“What you have
to gain by drinking responsibly”) is processed more fluently than a negatively-
framed message associated with guilt (“What you have to lose by not drinking
responsibly”).

While Ekman [22] considered only 6 basic emotions (anger, disgust, fear,
happiness, sadness and surprise), the definition and characterization of emotions

210 E. Hadoux et al.

A = Since you don’t do much exer-
cise, you should join an exercise class.

B = Doing an exercise class is boring.

C = Try the exhila-
rating climbing club.

D = Try the excit-
ing climbing group.

Fig. 1. Example of an argument graph.

has been widely discussed in psychology. Emotions in argumentation have also
been investigated recently using logic and sets of discrete emotions (see, e.g.,
[23–25]).

In this paper, we propose to focus on affective norm as used in the database
built by Bradley and Lang [26]. These capture the emotional response to specific
words in three dimensions: arousal (ranging from excited to calm), valence (pleas-
ant to unpleasant), and dominance (from being in control to being dominated).
For example, for valence scores, leukemia and murder are low and sunshine and
lovable are high; for arousal scores, grain and dull are low and lover and terrorism
are high; and for dominance scores, dementia and earthquake are low, and smile
and completion are high. There are a number of databases for affective norms,
and they have been used in diverse studies of emotion, behaviour, and language
processing.

In this work, we draw on this psychological research into affective norms to
evaluate the emotion invoked by particular choices of word in an argument. We
determine an emotional scoring of arguments taken from a recent effective norm
database that has nearly 14 thousand words [27]. Each word in the database
has been scored by around 20 participants using crowdsourcing. Scores are also
given according to gender, age group, and educational background.

By determining the emotion likely to be invoked by different candidates for a
posit, strategic choices can be made by the persuader. To illustrate, consider the
argument graph given in Fig. 1. Suppose the persuader wants to persuade the
persuadee with argument A. If the other agent does not believe A and believes B,
the persuader can posit either C or D as counterarguments to B. By taking into
account the score for affective norms for words in the arguments, the persuader
can determine a three-dimensional score for each of C and D according to the
gender, age group, and educational background of the persuadee, or on the whole
population, and thereby make a choice of which of C and D to present.

The literature has focused essentially on valence and arousal, and demon-
strated that these two dimensions interact with each other [28–30]. Eder and
Rothermund [28], in particular, showed that words with a positive valence were
treated faster when their arousal level was low than when it was high. Conversely,

Strategic Dialogical Argumentation Using Multi-criteria Decision 211

words with a negative valence were treated faster when their arousal level was
high. This means that negative valence combined with high arousal allows for
a more efficient cognitive processing than negative valence with low arousal,
and conversely for positive valence. In this work, we are dealing with superficial
interactions limited to the exchange of several arguments. They do not necessar-
ily mean that the persuadee puts a lot of effort into processing the arguments.
So following the psychology literature, we aim at using arguments that will be
treated faster and thereby have more impact on the persuadee.

Psychology classically considers arousal as an interval reflecting the inten-
sity of the stimulus and ranging from null to extreme, i.e., from 0 to a positive
value. In this case, an argument with a low arousal level should be treated more
fluently. However, the affective norm considers arousal as a bipolar scale rang-
ing from calmness to excitation, i.e., from −1 to 1. In this case, calmness does
not correspond to a null intensity of arousal but rather to a positive value on
a parallel scale. In other words, in classical psychology, there is a scale from 0
to n for degree of calmness with n being the maximum calmness, and there is a
scale from 0 to n for degree of excitation with n being the maximum excitation.
Therefore, the middle point in the bipolar scale (i.e., 0) corresponds to a state
of unarousal (i.e., it corresponds to 0 on each of the classical scales). As we use
the affective norm databases in this paper [26,27], understanding this correspon-
dence is important for the decision rules we present. So instead of minimizing
the arousal, we are looking to neutralize it and thus select arguments with an
arousal value as close to the midpoint of the bipolar scale as possible. Note, that
the values in the affective norm databases are strictly positive but are meant to
be rescaled into the [−1,1] interval.

4 Decision Making for Dialogues

In order to get the persuadee to accept the persuasion goal, the persuader has
to posit the right sequence of arguments with respect to the persuadee.

4.1 Decision Trees

Recently, Hadoux and Hunter [12] proposed a framework able to compute an
optimal policy by taking into account every possible sequence of arguments
using a decision tree. A decision tree represents all the possible combinations
of decisions and outcomes of a sequential decision-making problem. In a prob-
lem with two agents, a path from the root to any leaf crosses alternatively nodes
associated with the proponent (called decision nodes in this work) and nodes
associated with the opponent (called chance nodes or nature nodes). In the case
of a dialogue represented as a decision tree, a path is one possible permutation
of the argument set, i.e., one possible complete dialogue between the two agents.
If horizon h is smaller than the number of arguments, every execution (and thus
path) is at most of length h. In this case, it is a permutation of a subset of
the argument set. An edge between any two nodes n and n′ in the tree is the

212 E. Hadoux et al.

decision that has to be taken by the corresponding agent in order to transition
from node n to node n′. Solving a problem modelled as a decision tree amounts
to computing a policy, an action to perform (i.e., an argument to posit) in each
possible state of the dialogue.

However, Hadoux and Hunter [12] evaluate branches by averaging the values
and using mono-criterion decision rules. In order, to handle multiple dimensions
such as belief and emotion, we evaluate branches using multi-criteria decision
making (see next subsection).

Note, for this paper, we assume that the opponent is not using a model of
the proponent. Rather, she is selecting what she deems as the best arguments
according to what she believes and regards as a strong emotional effect. This
means we assume that the opponent is not behaving stochastically nor strategi-
cally, in particular not adversarially.

This is a reasonable assumption for some applications such as where the
opponent is being co-operative or at least not being competitive. Consider for
example, a proponent being a doctor trying to persuade a patient to eat more
healthily. The doctor is thinking strategically because she wants to persuade
the patient, whereas the patient is not trying to persuade the doctor nor trying
to resist the doctor. Rather she is just playing counter-arguments that she for
example believes. In future work, we will investigate how both the proponent
and opponent can have a model of each other, and use these to play strategically
against each other.

4.2 Multi-criteria Decision Making

In order to take into account several dimensions as a solution of a decision prob-
lem, we apply multi-criteria decision making. In this work, we use the traditional
notion of Pareto optimality to compare multi-dimension solutions.

Definition 1 (Pareto optimality). A solution (i.e., a multi-dimension value
of a leaf node) x = (x1, . . . , xn) dominates a solution y = (y1, . . . , yn) iff
∀i ∈ {1, . . . , n}, xi � yi and ∃j ∈ {1, . . . , n} s.t. xj � yj where � denotes the
preference operator.

A solution x is Pareto optimal if no solution y dominates it. The Pareto
front is the set of all Pareto optimal solutions.

Unfortunately, computing the Pareto front is a very costly operation because
each solution has to be compared, in the worst case scenario, to all the other
ones. One might use aggregation functions in order to reduce the problem to a
mono-criterion decision making problem on the aggregated criterion. However,
doing so reduces the number of Pareto optimal solutions that can be considered.
Using for instance the Weighted Average function implies that only the solutions
located on the convex envelope of the Pareto front can be found. Indeed, let
x1 = (1, 3), x2 = (3, 1) and x3 = (1.5, 1.5) be three Pareto optimal solutions. No
weights w1 and w2 exist such that w1 ∗ x3

1 + w2 ∗ x3
2 > w1 ∗ xi

1 + w2 ∗ xi
2 with

i ∈ {1, 2}.

Strategic Dialogical Argumentation Using Multi-criteria Decision 213

Fortunately, in this work, the number of solutions to compare in each node
in order to find the Pareto optimal ones is at most equal to the number of
arguments. It can therefore be computed easily.

5 Dimensions of the Dialogue Problem

In this paper, we illustrate the use of multi-criteria decision making with four
dimensions which we explain below: the valuation of the dialogue, the belief
in the goal, the aggregated valence and the aggregated arousal for the dialogue.
Therefore, each solution in the multi-criteria decision making problem is a vector
with four dimensions.

5.1 Valuation

The valuation of a dialogue is a real value v ∈ [0, 1] representing how desirable
this execution is with respect to the persuasion goal of the persuader. Therefore,
they are computed only for the persuader, from her point of view.

For the sake of simplicity, in this paper, the value vi of dialogue i is a value
of 1 if the goal has been posited in dialogue i or 0 otherwise. This function can
be replaced to take into account several goals and interactions between them
(e.g., synergies). Note that Dung’s [13] dialectical semantics can also be used.
For instance, the value of the goal can be 1 if it is in the grounded extension, 0
otherwise.

Also, this value can be non-binary. Gradual valuations can be used, taking
into account the interactions between arguments in the graph (e.g., [31]) or
argument strength (e.g., [32,33]).

5.2 Belief

Starting from an initial value for each argument, the belief has to be updated
at each step depending on the arguments played. The ambivalent method as
proposed by Hunter [34] allows for belief in an argument to increase when
it has been posited, and no attacker of it is believed (i.e., when ∀(B,A) ∈
Attacks(G), Bi−1(B) ≤ 0.5). In this work, we use a modification of the ambivalent
method that is equivalent but faster to compute (defined below). The updated
belief in A (i.e., Bi(A)) is the original belief (i.e., Bi−1(A)) plus k times the
belief in its complement (i.e., 1 − Bi−1(A)). The k coefficient is a value in the
unit interval that allows for only part of the belief to be transferred and thereby
for modelling agents who do not completely belief a proposition when posited,
and do not completely disbelieve a proposition when it is defeated. In addition,
belief in each attackee C of A is reduced to k × Bi−1(C).

Definition 2 (Fast ambivalent method). At step i in the dialogue, Bi is gener-
ated from Bi−1 as follows if D(i) = A and ∀(B,A) ∈ Attacks(G), Bi−1(B) ≤ 0.5:

214 E. Hadoux et al.

1. Bi(A) = Bi−1(A) + k × (1 − Bi−1(A)),
2. ∀C s.t.(A,C) ∈ Attacks(G), Bi(C) = k × Bi−1(C)

Whilst we use the ambivalent method in this paper, it can be replaced by
any update method (see [34] for more methods). The aim of this flexibility is to
model different kinds of persuadee with different kinds of behaviours, some of
which are not rational.

5.3 Affective Norm

We now consider how we can harness the resources for affective norms in multi-
criteria decision making for persuasion. The values for valence and arousal are
given for singleton words and are not considered as part of a sentence. As we deal
with complete arguments, we thus first need to aggregate the values to have a
valence and an arousal for an argument and for a sequence of arguments. As we
have seen, valence and arousal interact in a specific way. Following our discussion
of the psychology literature in Sect. 3, in this paper we aggregate the values for
an argument by taking the minimum valence and the maximum arousal across
all words of this argument.

Example 1. Consider the arguments A1 = “Smoking causes lung cancer” and
A2 = “Smoking causes serious disease”, the aggregated affective norms are as
follows. So A2 is more arousing and less pleasant, and hence indicates it would
be a better argument against smoking than A1.

Word/Argument Arousal Valence

Smoke 5 3.44

Causes 3.48 5.14

Lung 2.64 4.84

Cancer 5.14 1.9

Serious 4.05 5.88

Disease 5.5 1.68

A1 5.14 1.9

A2 5.5 1.68

Aggregating scores for valence and arousal of the keywords in the argument
as the score for valence and arousal of the argument follows widespread use
of keywords in text to provide the semantics of the text. This method is only
meant as a simple proposal for initiating the consideration of affective norms in
argumentation. By drawing on developments in affective computing (see, e.g.,
[35]), including sentiment analysis, we could obtain a deeper understanding of
the affective nature of phrase (e.g., taking the use of negation into account). In
this work, we aggregate across the sequence of arguments using the minimum
value over each dimension.

Strategic Dialogical Argumentation Using Multi-criteria Decision 215

Table 1. Decision rules for each dimension where xv is the valuation, xb the belief, xv′

the valence and xa the arousal

Dim. (xv, xb, xv′ , xa) x1 ∈ X is preferred iff

Valuation x1
v = arg maxx′∈X x′

v

Belief x1
b = arg maxx′∈X x′

b

Affective norm if:

∀xi ∈ X,xi
v′ > 0 x1

a = arg minx′∈X |x′
a|

∀xi ∈ X,xi
v′ < 0 x1

a = arg maxx′∈X x′
a

Mixed valence x1
a = arg maxx′∈X x′

a

5.4 Comparing Dimensions

In order to calculate the Pareto front, we need to compare each dimension for
each solution x in the set of solutions X. For this, we need to define the preference
function for each dimension. They are all summarized in Table 1.

Valuation and beliefs. Both the valuation and the belief are real valued dimen-
sions. Comparing them for two solutions is straightforward as we want to max-
imize them in this work. Note that it depends on the aim of the dialogue for
the persuader. In another situation, we might want to minimize the belief (for
instance, to discredit a political opponent).

Affective norm. Because of the interactions between them, we treat the two
affective norm dimensions (valence and arousal) as a pair of dimensions. We
need to have different sets of rules if we want to manage different situations. If,
for a given argument, all the possible words have a positive valence, we shall
neutralize the arousal and select the word with an arousal value close to the
mean. Conversely, if all the possible words have a negative valence, we shall
maximize the arousal and select the word with the highest arousal value. When
the possible words have either positive or negative valence, we shall apply the rule
corresponding to the negative valence. Indeed, the literature shows that there is
a “positive-negative asymmetry in evaluation” [36,37]. This means that negative
stimuli are treated more fluently than positive stimuli with a comparable arousal
value.

Note that, in practice, when different arguments are considered, they will
more likely fall under the “mixed valence” condition. However, in some situa-
tions, we want to compare arguments that have the same meaning in order to
choose which one is better phrased depending on the application and the per-
suadee. In this case, the arguments are only differing by a few words (synonyms).
Therefore, the “only positive valence” and “only negative valence” conditions are
important. Once the version of the argument (out of those with the same mean-
ing) is chosen, it is then compared with the other unrelated arguments.

216 E. Hadoux et al.

5.5 Selection Method

In order to compute an optimal policy we need to start from the leaves of the
tree and recursively compute the Pareto optimal solutions in the decision nodes.
However, a deterministic policy only gives one action to perform in each possible
state. Therefore, when several incomparable Pareto optimal solutions are valid
in a state, we need to carefully pick one.

This choice depends on the strategy the persuader wants to apply. Indeed,
in a one-shot situation, when there is only one dialogue, the persuader may
want to maximize the belief at all cost, meaning without any consideration
to the emotions induced by the dialogue. In this case, we pick the argument
with the maximum belief amongst the argument in the Pareto front. On the
other hand, when several dialogues are planned (for instance, in a doctor/patient
situation), the persuader might want to sacrifice the belief in order to leave a
good impression in the first dialogues, in the hope of increasing the efficiency of
the future dialogues.

6 Size-Reducing Constraints

The low number of Pareto optimal solutions for each dialogue can be handled
efficiently. However, the computational difficulty comes from the large number
of possible dialogues. In the most general case where we allow the arguments
to occur several times in the dialogue without a bounded horizon, this number
is infinite. To reduce it, we consider three size-reducing constraints that can be
independently used or combined:

Constraint 1 no repetition of arguments in the dialogue,
Constraint 2 no direct attacker of the goal is allowed as a proponent move,
Constraint 3 only relevant arguments can be played.

A relevant argument is the first one of a dialogue or any argument connected to
the ones already posited.

6.1 Theoretical Results

We now consider the theoretical benefits of size-reducing constraints by identify-
ing the theoretical numbers of dialogues n depending on the different constraints
applied. In the following, a is the number of arguments, h the horizon and k the
number of direct attackers to the goal argument. We make the assumptions that
h < k < a, for Propositions 1 to 5, and that h < a−k, for Proposition 3, to ensure
that the dialogues are of size h in any situation. Without these assumptions the
number of dialogues of size h is n′ ≤ n.

We start by giving the naive constraint which allows any argument to be
used at each step of the dialogue.

Proposition 1 (Naive constraint). In the general case, the number of dialogues
is n = ah, i.e., a choices at each of the h steps.

Strategic Dialogical Argumentation Using Multi-criteria Decision 217

We consider constraint 1 and constraints 1 and 2 together.

Proposition 2 (No repetition constraint). When arguments cannot be repeated
in the dialogue, n = a!

(a−h)! , i.e., a × (a − 1) × . . . × (a − h + 1).

Proposition 3 (No attacking arguments + no repetition). In this case, the
proponent cannot play arguments that directly attack her goal argument:

n =
	h

2
∑

i=0

(⌊
h
2

⌋

i

)
× (a − k)!

(a − k − ⌈
h
2

⌉ − i)!
× k!

(k − (
⌊
h
2

⌋ − i))!
.

Proof (Outline). For horizon h = 3, the numbers of possible choices at each step
are (depending on the opponent playing a direct attacker of the goal or not):

n = (a − k) × k × (a − k − 1)
+ (a − k) × (a − k − 1) × (a − k − 2)

n = 1 × (a − k)!
(a − k − 2 − 0)!

× k!
(k − (1 − 0))!

+ 1 × (a − k)!
(a − k − 2 − 1)!

× k!
(k − (1 − 1))!

n =
1∑

i=0

(
1
i

)
× (a − k)!

(a − k − 2 − i)!
× k!

(k − (1 − i))!
.

For horizon h = 4,

n = (a − k) × (a − k − 1) × k × (k − 1)
+ 2 × (a − k) × (a − k − 1) × (a − k − 2) × k

+ (a − k) × (a − k − 1) × (a − k − 2) × (a − k − 3)

n = 1 × (a − k)!
(a − k − 2 − 0)!

× k!
(k − (2 − 0))!

+ 2 × (a − k)!
(a − k − 2 − 1)!

× k!
(k − (2 − 1))!

+ 1 × (a − k)!
(a − k − 2 − 2)!

× k!
(k − (2 − 2))!

n =
2∑

i=0

(
2
i

)
× (a − k)!

(a − k − 2 − i)!
× k!

(k − (2 − i))!
.

We can see the general expression from the examples.

The following result shows that we get improvement from the use of the
constraints considered in the results above.

218 E. Hadoux et al.

Proposition 4. Given values for the number of arguments a, the horizon h,
and the number of direct attackers to the goal argument k, if n1 is the number
of dialogues obtained by proposition 1, n2 is the number of dialogues obtained by
proposition 2, and n3 is the number of dialogues obtained by proposition 3, then
n1 ≥ n2 and n2 ≥ n3.

In Table 2, we show the percentage of reduction in using the constraints as
calculated by Propositions 1, 2, and 3.

Table 2. The fraction of all dialogues (as calculated by Proposition 1) obtained by
using constraint 1 (i.e., no repetition constraint) or constraint 1 and 2 (i.e., no attacking
arguments and no repetition), and where h = 10 and k = 15.

Constraint Number of arguments

30 40 50 60 70

1 0.184 0.293 0.381 0.452 0.509

1 + 2 0.004 0.023 0.058 0.101 0.146

Table 3. Number of nodes for a 7-argument graph

arcs removed 0 5 10 15

nodes 2372 1182 319 28

We now consider the third size-reducing constraint which states that only rel-
evant arguments can be played. The number of dialogues using this constraint
is highly dependent on the structure of the graph, and so we proceed by consid-
ering the worst case scenario, which is when the graph is a complete graph, and
best case scenario, which is when the graph is a chain of arguments.

Proposition 5 (Relevant arguments constraint) (Worst case). The number of
dialogues is the same as in Proposition 2 (if we consider the no repetition con-
straint at the same time). (Best case) The number of dialogues is n = a−(h−1),
i.e., one possible dialogue for each possible starting point leading to a sequence
of length h.

Table 3 shows the number of nodes in the decision tree generated from a 7-
argument graph, with the “relevant arguments” and “no repetition” constraints
applied. The top values represent the number of arcs removed from the complete
graph where 0 denotes the complete graph and 15 a chain. We can see that the
number of nodes in the tree exponentially decreases. Also note that the “no
goal direct attackers” constraint is not applied here as it is trivial in the case
of the complete graph. Indeed, in this case the only dialogues are of size 2, the
goal argument for the proponent and any of the remaining arguments for the
opponent. The proponent cannot play at step 3 without attacking her goal.

Strategic Dialogical Argumentation Using Multi-criteria Decision 219

7 Computational Evaluation

In order to study the computational efficiency of our method, we use an argument
graph on the topic of the annual flu vaccination for hospital staff, developed with
healthcare professionals. It contains 35 arguments including a persuasion goal for
taking the vaccine and various counterarguments. Some examples of arguments
are: “NHS staff can transmit infections to the patients.” (pro-vaccine), “The flu
vaccine weakens the immunitary system.” (anti-vaccine) and “The flu vaccine is
useless because the strain is guessed.” (anti-vaccine).

Note that, the creation of the argument graph is context dependent. In some
cases, information is easily available and in others we need to rely on experts.
Detailed explanations on how we can model a domain for behaviour change
applications can be found in [38].

We also add synonym arguments (arguments with same meaning but different
wording) for 15 of the arguments in the graph, carrying the same meaning but
using different words and so different values for the affective norm. The final
graph has thus 50 arguments1. Figure 2 depicts the graph without the synonym
arguments. We can see that the graph is not a tree, it contains cycles and multiple
paths from nodes to the root, making it a non-trivial example. The experiments
have been run on an Intel i5-6600 at 3.30 GHz with 8 GB of RAM.

Fig. 2. Argument graph without synonym arguments

Using different affective norm values gives, as expected, different optimal
sequences of arguments for each player. For instance, using the norm associ-
ated with older people yields the sequence with the following argument names:
“annualvaccine notconcerned strongsense nocare cantransmit dontworry nodi-
rect” while using the norm associated to younger people gives: “annualvaccine
nocare strongsense dontworry caninfect noface2face nodirect”.

1 The code, the graph and the mapping to the actual arguments can be found at
https://github.com/ComputationalPersuasion/stardec.

https://github.com/ComputationalPersuasion/stardec

220 E. Hadoux et al.

Table 4. Computation time for horizons 1 to 8 (in sec)

1 2 3 4 5 6 7 8

0.08 0.08 0.08 0.12 0.26 4 28 597

Table 4 shows the computation time from the creation of the tree to the
computation of an optimal policy, with constraints 1 to 3 enabled, for horizons
from 1 to 8. As we can see, the time grows exponentially with the horizon.
However, we argue that 8 is a good length for the horizon as it allows several
exchanges of arguments between both agents without incurring a too high risk
of disengagement from the persuadee. Note that most of the time is spent on
creating the tree. Using methods such as Branch-and-bound can highly improve
the computation time.

8 Study with Participants

The aim of this empirical study is to investigate the computational viability of
evaluating emotion and belief associated with an argument by an opponent and
using this to determine the best policy for the proponent. The purpose is also to
validate the choices of decision rules (described in Table 1) when instantiating
with the psychology literature.

8.1 Preliminary Experimentation

As a first step, we chose a set of 13 arguments amongst the 35 from the same
graph as in Sect. 7. Some are pro arguments the other are counterarguments. We
crowdsourced the creation of synonyms. Using the Crowdflower2 platform, we
gave all 13 arguments and asked for one or more synonyms for a given word in the
argument. This was run using 25 participants, with a sufficient knowledge of the
English language. After cleaning the results (removing abberrant answers such
as “planetary system” when asking for a synonym of “mercury” in a vaccine, or
answers in a different language), we ended up with between 2 and 7 alternative
words, depending on the argument.

8.2 Participants, Material and Procedure

We recruited 100 participants via the Prolific3 platform. The only screening
criterion we used was the language of participants which we limited to English.
We presented each of the 13 arguments considered in the preliminary experiment
to each participant. For each argument, we gave the synonyms obtained in the
preliminary experiment in the form of a menu, and asked the participant to select
the synonym she deems the best at “conveying its message”. We were therefore
asking each participant which was the best version of each argument.
2 https://www.crowdflower.com.
3 https://www.prolific.ac.

https://www.crowdflower.com
https://www.prolific.ac

Strategic Dialogical Argumentation Using Multi-criteria Decision 221

8.3 Results

Before collating the results, we removed some arguments and participants from
further consideration as follows. We removed two arguments where the choice of
word was highly constrained by the domain (“complications” cannot be replaced
with e.g., “problems” when talking about unfortunate consequences of a vaccine,
and the word “injection” is almost never used when “vaccine” can be picked). We
removed the 12 participants choosing the wrong answer for these two arguments.
We also removed a third argument because the set of synonyms was almost the
same as for another argument, leaving us with 10 arguments.

We applied our set of rules to the same set of arguments with the same sets of
synonyms. We compared the results with the answers given by the participants.
Our set of rules (Table 1) gives us the most chosen word for 8 arguments out of
10 and the second most chosen for the remaining 2. It means that these rules
(the second half of Table 1) approximate efficiently the relation the majority of
our participants have with emotions induced by the arguments.

Table 5. Cumulative score for the prediction of the answers

9 7 6 5 3 1

1.1% 13.2% 36.3% 52.7% 95.6% 100%

Note that while we accurately represent the choice of the majority for each
argument, only a few participants are part of the majority for all arguments
at the same time. Table 5 shows the cumulative sum of good predictions when
analyzing the individual participant’s answers. Each percentage is the percentage
of the participants we have managed to predict correctly at least x answers.
For instance, for x = 9, 1.1% means that we have correctly predicted at least 9
choices out of 10 for 1.1% of the participants. Interestingly, our method predicted
correctly more than half the answers for more than half of the population: 52.7%
for 5 or more answers.

This user experiment has two conclusions. First it shows that the psychology
literature reflects the choices made by the participants. Second it demonstrates
that we can transform the psychological principles into logical and mathematical
formulae and predict the choices with good results.

9 Conclusion

In this paper, we have shown how decision-theoretic methods for multi-criteria
decision making can be used to identify an optimal policy for dialogical argumen-
tation. We have presented a framework for modelling a proponent and opponent
in a dialogue, and for handling multiple criteria such as the degree the opponent
believes an argument, and the degree of valence and arousal, that could be evoked

222 E. Hadoux et al.

by the argument in the opponent. Our hypotheses are supported by the psycho-
logical literature and backed by user experiments. These are only indicative of
the dimensions that might be used in an application. In future work, we intend to
develop the treatment of emotion in the framework as the topic has received lit-
tle attention in the computational argumentation literature. Exceptions are [39]
which provide rules for specifying scenarios where empathy is given or received,
and [40] which investigates relationships between emotions that participants feel
during a debate (measured physiologically) and arguments. In contrast, affective
computing has put emotion at the centre of the relationship between users and
computing systems [41].

Acknowledgements. This research is part funded by EPSRC Project EP/N008294/1
(Framework for Computational Persuasion).

References

1. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. J.
Log. Comput. 15(6), 1009–1040 (2005)

2. Prakken, H.: Formal sytems for persuasion dialogue. Knowl. Eng. Rev. 21(2), 163–
188 (2006)

3. Fan, X., Toni, F.: Assumption-based argumentation dialogues. In: Proceedings of
IJCAI 2011, pp. 198–203 (2011)

4. Caminada, M., Podlaszewski, M.: Grounded semantics as persuasion dialogue. In:
Proceedings of COMMA 2012, pp. 478–485 (2012)

5. Thimm, M.: Strategic argumentation in multi-agent systems. Kunstliche Intelligenz
28, 159–168 (2014)

6. Rahwan, I., Larson, K.: Pareto optimality in abstract argumentation. In: Proceed-
ings of AAAI 2008, pp. 150–155 (2008)

7. Fan, X., Toni, F.: Mechanism design for argumentation-based persuasion. In: Pro-
ceedings of COMMA 2012, pp. 322–333 (2012)

8. Rienstra, T., Thimm, M., Oren, N.: Opponent models with uncertainty for strategic
argumentation. In: Proceedings of IJCAI 2013, pp. 332–338 (2013)

9. Hadjinikolis, C., Siantos, Y., Modgil, S., Black, E., McBurney, P.: Opponent mod-
elling in persuasion dialogues. In: Proceedings of IJCAI 2013, pp. 164–170 (2013)

10. Hadoux, E., Beynier, A., Maudet, N., Weng, P., Hunter, A.: Optimization of prob-
abilistic argumentation with Markov decision models. In: Proceedings of IJCAI
2015, pp. 2004–2010 (2015)

11. Black, E., Coles, A., Bernardini, S.: Automated planning of simple persuasion
dialogues. In: Bulling, N., van der Torre, L., Villata, S., Jamroga, W., Vasconcelos,
W. (eds.) CLIMA 2014. LNCS (LNAI), vol. 8624, pp. 87–104. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-09764-0 6

12. Hadoux, E., Hunter, A.: Strategic sequences of arguments for persuasion using
decision trees. In: Proceedings of AAAI 2017 (2017)

13. Dung, P.: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming, and n-person games. Artif. Intell. 77, 321–357
(1995)

14. Thimm, M.: A probabilistic semantics for abstract argumentation. In: Proceedings
of ECAI 2012, pp. 750–755 (2012)

https://doi.org/10.1007/978-3-319-09764-0_6

Strategic Dialogical Argumentation Using Multi-criteria Decision 223

15. Hunter, A.: A probabilistic approach to modelling uncertain logical arguments. Int.
J. Approx. Reason. 54(1), 47–81 (2013)

16. Hunter, A., Thimm, M.: Probabilistic argumentation with incomplete information.
In: Proceedings of ECAI 2014, pp. 1033–1034 (2014)

17. Baroni, P., Giacomin, M., Vicig, P.: On rationality conditions for epistemic proba-
bilities in abstract argumentation. In: Proceedings of COMMA 2014, pp. 121–132
(2014)

18. Lazarus, R.S.: Progress on a cognitive-motivational-relational theory of emotion.
Am. psychol. 46(8), 819 (1991)

19. Scherer, K.R.: Appraisal considered as a process of multilevel sequential checking.
Apprais. Process. Emot.: Theory, Methods, Res. 92(120), 57 (2001)

20. Duhachek, A., Agrawal, N., Han, D.: Guilt versus shame: coping, fluency, and
framing in the effectiveness of responsible drinking messages. J. Mark. Res. 49(6),
928–941 (2012)

21. Tversky, A., Kahneman, D.: The framing of decisions and the psychology of choice.
Science 211(4481), 453–458 (1981)

22. Ekman, P.: An argument for basic emotions. Cognit. Emot. 6(3–4), 169–200 (1992)
23. Fulladoza Dalibón, S., Martinez, D., Simari, G.: Emotion-directed argument aware-

ness for autonomous agent reasoning. Inteligencia Artificial. Revista Iberoameri-
cana de Inteligencia Artificial 15(50), 30–45 (2012)

24. Lloyd-Kelly, M., Wyner, A.: Arguing about emotion. In: Ardissono, L., Kuflik, T.
(eds.) UMAP 2011. LNCS, vol. 7138, pp. 355–367. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28509-7 33

25. Nawwab, F., Dunne, P., Bench-Capon, T.: Exploring the role of emotions in ratio-
nal decision making. In: COMMA, pp. 367–378 (2010)

26. Bradley, M., Lang, P.: Affective norms for English words (ANEW): Instruction
manual and affective ratings. Technical report, The Center for Research in Psy-
chophysiology, University of Florida (1999)

27. Warriner, A., Kuperman, V., Brysbaert, M.: Norms of valence, arousal, and dom-
inance for 13,915 English lemmas. Behav. Res. Methods 45(4), 1191–1207 (2013)

28. Eder, A.B., Rothermund, K.: Automatic influence of arousal information on eval-
uative processing: valence-arousal interactions in an affective Simon task. Cognit.
Emot. 24(6), 1053–1061 (2010)

29. Jefferies, L.N., Smilek, D., Eich, E., Enns, J.T.: Emotional valence and arousal
interact in attentional control. Psychol. Sci. 19(3), 290–295 (2008)

30. Robinson, M.D.: Watch out! that could be dangerous: valence-arousal interactions
in evaluative processing. Personal. Soc. Psychol. Bull. 30(11), 1472–1484 (2004)

31. Cayrol, C., Lagasquie-Schiex, M.C.: Gradual valuation for bipolar argumentation
frameworks. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp.
366–377. Springer, Heidelberg (2005). https://doi.org/10.1007/11518655 32

32. Amgoud, L., Ben-Naim, J.: Axiomatic foundations of acceptability semantics. In:
Proceedings of KR 2016 (2016)

33. Bonzon, E., Delobelle, J., Konieczny, S., Maudet, N.: A comparative study of
ranking-based semantics for abstract argumentation. In: Proceedings of AAAI
2016, pp. 914–920 (2016)

34. Hunter, A.: Modelling the persuadee in asymmetric argumentation dialogues for
persuasion. In: Proceedings of IJCAI 2015, pp. 3055–3061 (2015)

35. Mohammad, S.: Sentiment analysis: detecting valence, emotions, and other affec-
tual states from text. In: Emotion Management, pp. 201–238. Elsevier (2016)

https://doi.org/10.1007/978-3-642-28509-7_33
https://doi.org/10.1007/11518655_32

224 E. Hadoux et al.

36. Peeters, G., Czapinski, J.: Positive-negative asymmetry in evaluations: the distinc-
tion between affective and informational negativity effects. Eur. Rev. Soc. Psychol.
1(1), 33–60 (1990)

37. Baumeister, R.F., Bratslavsky, E., Finkenauer, C., Vohs, K.D.: Bad is stronger
than good. Rev. Gen. Psychol. 5(4), 323–370 (2001)

38. Chalaguine, L., Hadoux, E., Hamilton, F., Hayward, A., Hunter, A., Polberg,
S., Potts, H.W.W.: Domain modelling in computational persuasion for behaviour
change in healthcare. CoRR abs/1802.10054 (2018)

39. Martinovski, B., Mao, W.: Emotion as an argumentation engine: modeling the role
of emotion in negotiation. Group Decis. Negot. 18, 235–259 (2009)

40. Benlamine, S., Chaouachi, M., Villata, S., Cabrio, E., Gandon, C.F.F.: Emotions
in argumentation: an empirical evaluation. In: Proceedings of IJCAI 2015, pp.
156–163 (2015)

41. Calvo, R., D’Mello, S.: Affect detection: an interdisciplinary review of models,
methods, and their applications. IEEE Trans. Aff. Comput. 1(1), 18–37 (2010)

First-Order Definable Counting-Only
Queries

Jelle Hellings1(B), Marc Gyssens1, Dirk Van Gucht2, and Yuqing Wu3

1 Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
jelle.hellings@uhasselt.be

2 Indiana University, 150 S. Woodlawn Avenue, Bloomington, IN 47405, USA
3 Pomona College, 185 E 6th Street, Claremont, CA 91711, USA

Abstract. For several practical queries on bags of sets of objects, the
answer does not depend on the precise composition of these sets, but
only on the number of sets to which each object belongs. This is the
case k= 1 for the more general situation where the query answer only
depends on the number of sets to which each group of at most k objects
belongs. We call such queries k-counting-only. Here, we focus on k-Sy-
CALC, k-counting-only queries that are first-order definable. As k-Sy-
CALC is semantically defined, however, it is not surprising that it is
already undecidable whether a first-order query is in 1-SyCALC. There-
fore, we introduce SimpleCALC-k, a syntactically defined (strict) frag-
ment of k-SyCALC. It turns out that many practical queries in k-SyCALC
can already be expressed in SimpleCALC-k. We prove that the k-counting-
only queries form a non-collapsing hierarchy: for every k, there exist
(k+1)-counting-only queries that are not k-counting-only. This result
specializes to both SimpleCALC-k and k-SyCALC. Finally, we establish a
strong dichotomy between 1-SyCALC and SimpleCALC-k on the one hand
and 2-SyCALC on the other hand by showing that satisfiability, validity,
query containment, and query equivalence are decidable for the former
two languages, but not for the latter one.

1 Introduction

Often, (parts of) queries can be viewed as operating on a bag of sets, or, equiv-
alently, on transaction databases [8], bipartite graphs, or binary many-to-many
relations. As an example, consider the bag-of-sets dataset of Fig. 1, left, in which
each set represents a course and contains the students taking that course. This
bag of sets can alternatively be interpreted as the bipartite graph, shown in Fig. 1,
right. Many practical queries on bags of sets turn out to be counting-only : in
order to answer them, it is not necessary to know to which sets each object
belongs, but only to how many sets each object belongs. As examples, consider
the queries ‘return students who take at least 2 courses’, expressed by

Q1 = {〈x〉 | count(x) ≥ 2},

This material is based on work supported by the National Science Foundation under
Grant No. NSF 1438990.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 225–243, 2018.
https://doi.org/10.1007/978-3-319-90050-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_13&domain=pdf

226 J. Hellings et al.

pl

Alice
Bob

db

Alice
Bob
Carol

ai

Dan

Alice

Bob

Carol

Dan

pl

db

ai

Fig. 1. Left, a bag-of-sets dataset. Right, same dataset represented as bipartite graph.

and ‘return pairs of students who take the same number of courses’, expressed
by

Q2 = {〈x, y〉 | (x �= y) ∧ count(x) = count(y)}.

In the above expressions, “count(·)” counts the number of sets (here, courses)
to which the argument (here, a student) belongs. Clearly, one need not know
which courses each student takes to answer Q1 or Q2, but only how many courses
each student takes. Next, consider the queries ‘return pairs of distinct students
which take a common course’, expressed by

Q3 = {〈x, y〉 | (x �= y) ∧ count(x, y) ≥ 1},

and ‘return pairs of distinct students which take the same courses’, expressed
by

Q4 = {〈x, y〉 | (x �= y) ∧ count(x, y) = count(x) ∧ count(x, y) = count(y)}.

Notice that Q3 is a basic intersection query and Q4 is a basic equivalence query.
Both can be answered by counting not only (i) how many courses each student
takes, but also (ii) how many courses each pair of students share. For k ≥ 0, we
call a query k-counting-only if it can be answered by only counting to how many
sets each group of at most k objects belongs. Hence, Q1 and Q2 are 1-counting-
only, while Q3 and Q4 are 2-counting-only. Similarly, the Boolean query ‘does
there exist a course taken by 3 students’, expressed by

Q5 = {〈〉 | ∃x∃y∃z ((x �= y ∧ x �= z ∧ y �= z) ∧ count(x, y, z) ≥ 1)},

is 3-counting-only. In contrast, the Boolean query ‘there are at least 3 courses’,
expressed by

Q6 = {〈〉 | count() ≥ 3}.

can already be answered at the scheme level, and is therefore 0-counting-only.
Observe that the counting-only queries Q3 and Q4 only differ in the use of the

generalized quantifiers ‘takes some’ versus ‘takes all and only’. Similar familiar
families of counting-only queries can be formulated using other generalized quan-
tifiers such as ‘takes only’, ‘takes all’, ‘takes no’, ‘takes at least k’, and ‘takes
all but k’. Such queries are not only of relevance in the study of generalized
quantifiers [4,19], but also play an obvious central role in the frequent itemset

First-Order Definable Counting-Only Queries 227

pl

Alice
Bob

db

Alice
Carol

ai

Bob
Carol

vr

pl

Alice
Bob
Carol

db

Alice

ai

Bob

vr

Carol

count() = 4;

count(A) = 2;

count(B) = 2;

count(C) = 2;

count(A,B) = 1;

count(A,C) = 1;

count(B,C) = 1.

Fig. 2. Left, Bags of sets S1 (top) and S2 (bottom), both assigning students to four
courses. Right, Count-information shared between S1 and S2.

problem [8]. In essence, bag-of-set-like data models and counting-only queries can
also be found in the differential constraints of Sayrafi et al. [17], citation analysis
and bibliometrics [5], the symmetric Boolean functions of Quine [11,16], finite
set combinatorics [2], and the data spaces of Fletcher et al. [7], either explicitly
or implicitly.

A more formal way to capture the notion of k-counting-only query is that
such queries cannot distinguish between bags of sets which share the same up-
to-k counting information. Consider, e.g., the bags of sets S1 and S2 of Fig. 2.
Clearly, S1 and S2 agree on all up-to-2 counting information, but disagree on
count(Alice,Bob,Carol). Hence, Q1–Q4 and Q6 yield the same result on S1 and S2,
whereas Q5, which is 3-counting-only, evaluates to false on S1 and true on S2.

Finally, notice that the concept of counting-only query applies to more gen-
eral data models than the bag-of-sets model. Consider, e.g., a database with
a student-course relation SC and a department-course relation DC, with the
obvious meaning. On this database, query

P = {〈x, y〉 | count({z | SC(x, z) ∧ DC(y, z)}) = count({z | SC(x, z)})}
returns student-department pairs in which the student only takes courses offered
by that department. This query, conceptually similar to Q4 above, certainly has
a counting-only flavor.

Motivated by the above, we believe that the class of counting-only queries
deserves a broader understanding. Our notion of k-counting-only queries, k ≥ 0,
significantly generalizes the notion of counting-only queries of Gyssens et al. [11],
which only corresponds with our case k = 1.

As many interesting counting-only queries are first-order definable, includ-
ing Q1 and Q3–Q6, we study more specifically the class of first-order definable
counting-only queries on the bags-of-sets data model. To do so, we use (a varia-
tion of) the two-sorted first-order logic SyCALC of Gyssens et al. In this logic, we
have object variables, set name variables, and a set-membership relation relating
objects and set names. Our main results are as follows:

1. We semantically define the class of k-counting-only queries, and show that
they include many practically relevant first-order-definable queries.

228 J. Hellings et al.

2. We syntactically define the class SimpleCALC-k, k ≥ 0, a fragment of the first-
order-definable queries. All queries in this class turn out to be k-counting-
only. We show that they capture many practical queries in k-SyCALC, the
k-counting-only queries in SyCALC. This is in particular the case for those
that can be written using simple “count(·)” terms, such as Q1 and Q3–Q6.

3. We establish that the k-counting-only queries form a non-collapsing hierarchy:
for every k, k ≥ 0, there are (k+1)-counting-only queries that are not k-
counting-only. This result specializes to k-SyCALC and SimpleCALC-k.

4. We show that 1-SyCALC and SimpleCALC-k, k ≥ 0, have the finite model
property and use that to prove that satisfiability (and, hence, validity, query
containment, and query equivalence) is decidable for these classes. We also
establish that satisfiability is NEXPTIME-hard for SimpleCALC-k. In con-
trast, satisfiability for 2-SyCALC is shown to be undecidable. Hence, there is
a strong dichotomy between 1-SyCALC and SimpleCALC-k, k ≥ 0, on the one
hand and 2-SyCALC on the other hand. Moreover, the decidability of 1-Sy-
CALC and SimpleCALC-k, k ≥ 0, sets them apart from many other fragments
of first-order logic. In particular, this result identifies a large “well-behaved”
fragment of first-order logic in which many practical queries can be expressed,
and other than the usual classes of “well-behaved” first-order queries such as
the conjunctive queries, the monadic first-order logic, and the two-variable
fragments of first-order logic [1,3,9,10,14].

2 Bags of Sets and Counting-Only Queries

Let D and N be two disjoint infinitely enumerable domains of objects and names.
We represent finite bags of finite sets by structures, as follows:

Definition 2.1. A structure S is a pair S = (N, γ), with N ⊂ N a finite set
of set names and γ ⊂ D × N a finite set-membership relation. For n ∈ N,
objects(n;S) = {o | (o,n) ∈ γ} is the set of objects that are a member of the set
named n. We write adom(S) =

⋃
n∈N objects(n;S) for the active domain of S.

If A ⊆ D, then S|A denotes the structure (N, γ ∩ (A × N)).

Structures explicitly define the set N of set names they use, whereas objects
are only defined via the set-membership function γ. In this way, N allows the
representation of empty sets:

Example 2.2. The bag-of-sets dataset of Fig. 1 is represented by the structure
S1 = (N, γ) with N = {pl,db,ai} and γ = {(Alice,pl), (Bob,pl), (Alice,db),
(Bob,db), (Carol,db), (Dan,ai)}. If we were to add course vr to N without
changing γ, this would mean that vr is offered but no student takes it.

A query q maps a structure to a relation of fixed arity over objects. We write
[[q]]S to denote the evaluation of q on structure S. If the arity of q is 0, then q
is Boolean. The only two relations of arity 0, ∅ and {〈〉}, represent false and
true, respectively. In the Introduction, we showed that many queries on bags of
sets cannot distinguish structures with the same up-to-k count information, for
some k, k ≥ 0. We formalize this next:

First-Order Definable Counting-Only Queries 229

Definition 2.3. Let S = (N, γ) be a structure and I ⊂ D a finite set of
objects, often referred to as an itemset. The cover of I in S is defined by
cover(I;S) = {n | (n ∈ N) ∧ (I ⊆ objects(n;S))}. The support of I in S
is defined by [[count(I)]]S = |cover(I;S)|. Structures S1 and S2 are exactly-
k-counting-equivalent if [[count(I)]]S1 = [[count(I)]]S2 for every itemset I with
|I| = k. Structures S1 and S2 are k-counting-equivalent if they are exactly-j-
counting-equivalent for all j, 0 ≤ j ≤ k.1

Structures are exactly-0-counting-equivalent if they have the same number
of set names. Hence, for all k, k ≥ 0, k-counting-equivalent structures have the
same number of set names.

Example 2.4. Consider the structures S1 and S2 in Fig. 2. Both have four set
names representing courses. In both S1 and S2, each student takes two courses,
and each pair of distinct students shares one common course. Since the itemset
{Alice,Bob,Carol} has no cover in S1, but is covered by pl in S2, we conclude
that S1 and S2 are 2-counting-equivalent, but not 3-counting-equivalent.

We are now ready to define k-counting-only queries:

Definition 2.5. A query q is k-counting-only if, for every pair of k-counting-
equivalent structures S1 and S2, we have [[q]]S1 = [[q]]S2 . A query is counting-only
if there exists k, k ≥ 0, such that the query is k-counting-only.2

Example 2.6. As mentioned in the Introduction, Q1 and Q2 are 1-counting-only,
Q3 and Q4 are 2-counting-only, Q5 is 3-counting-only, and Q6 is 0-counting-only.
Query Q5 is not 2-counting-only, since, on the 2-counting-equivalent structures
S1 and S2 in Fig. 2, it returns different results. Notice that Q2 involves pairs of
objects despite being 1-counting-only. To illustrate that this generalizes, consider

Q7 = {〈〉 | ∃x∃y1∃y2 (x �= y1) ∧ (x �= y2) ∧ (y1 �= y2) ∧
count(y1) = count(x, y1) ∧ count(y2) = count(x, y2) ∧

count(x) = count(x, y1) + count(x, y2) − count(x, y1, y2)}.

On the student-courses examples, Q7 returns true if there is a student who takes
exactly the courses taken by a pair of distinct other students combined. Clearly,
it is 3-counting-only. However, Q7 is also 2-counting-only, as it is equivalent to

Q′
7 = {〈〉 | ∃x∃y1∃y2 (x �= y1) ∧ (x �= y2) ∧ (y1 �= y2) ∧

count(y1) = count(x, y1) ∧ count(y2) = count(x, y2) ∧
count(x) = count(x, y1) + count(x, y2) − count(y1, y2)}.

So, some 2-counting-only queries can be used to reason on more than two objects.
1 Gyssens et al. [11] use the tem incidence to refer to the support of a single object,

and incidence-equivalence to refer to 1-counting-equivalence.
2 Gyssens et al. [11] use the term counting-only to denote the first-order definable

queries that are 1-counting-only.

230 J. Hellings et al.

We now show that k-counting information can be used to express the exis-
tence of any set-membership relation between at most k objects. To do so, we
use the notion of generalized support, borrowed from Calders and Goethals [6].

Definition 2.7. The generalized cover of itemsets I and E in structure S =
(N, γ) is defined by gcover(I;E;S) = {n | (n ∈ N) ∧ (I ⊆ objects(n;S)) ∧
(objects(n;S) ∩ E = ∅)} and the generalized support of I and E in S is defined
by [[gcount(I;E)]]S = |gcover(I;E;S)|.

Observe that I∩E �= ∅ implies that gcover(I;E;S) = ∅ and [[gcount(I;E)]]S =
0. Using the inclusion-exclusion principle [6], we can show that generalized-
support terms [[gcount(I;E)]]S are fully expressible using |I ∪ E|-support terms
only:

Proposition 2.8. Let S1 and S2 be k-counting-equivalent structures and let I,E
be itemsets with |I ∪ E| ≤ k. We have [[gcount(I;E)]]S1 = [[gcount(I;E)]]S2 .

Allowing basic gcount(·) terms3 of the form gcount(X;Y) ∼ c, with X and Y

sets of object variables, “∼” a comparison, and c a constant, often simplifies the
expression of counting-only queries.

Example 2.9. Since count(X) = gcount(X; ∅), Q1, Q3, Q5, and Q6 can be expressed
with basic gcount(·) terms. Query Q2 cannot be rewritten with basic gcount(·)
terms, because it is not first-order definable [15] (see also Proposition 5.3). Query
Q4 is equivalent to Q′

4 = {〈x, y〉 | (x �= y) ∧ gcount(x; y) = 0 ∧ gcount(y;x) = 0}.
Finally, Q7 and Q′

7 are equivalent to

Q′′
7 = {〈〉 | ∃x∃y1∃y2 (x �= y1) ∧ (x �= y2) ∧ (y1 �= y2) ∧

gcount(x; y1, y2) = 0 ∧ gcount(y1;x) = 0 ∧ gcount(y2;x) = 0}.

3 A First-Order Logic for Bag-of-Sets Structures

We now study the relationships between counting-only queries and first-order
definable queries. To query bag-of-sets structures, we use a two-sorted variant
of first-order logic denoted SyCALC, based on the work of Gyssens et al. [11].4

Partial SyCALC formulae are defined by the grammar

e := Γ (x,X) | x = y | X = Y | e ∨ e | ¬e | ∃x e | ∃X e,

in which the lowercase variables x and y represent objects and the uppercase
variables X and Y denote set names. We also allow the usual shorthands.

As to the semantics of a partial SyCALC formula e, let S = (N, γ) be a struc-
ture, νD a mapping from object variables to objects in D, and νN a mapping from
3 These play a central role in the normal form of 1-counting-only first-order definable

queries of Gyssens et al. [11]: gteq(o, c) corresponds to [[gcount(o; ∅)]]S ≥ c and
cogteq(o, c) to [[gcount(∅; o)]]S ≥ |N| − c.

4 Gyssens et al. [11] disallow object comparisons (x = y in the grammar).

First-Order Definable Counting-Only Queries 231

set name variables to set names in N. We define the relationship (S, νD, νN) � e,
with all free variables of e in the union of the domains of νD and νN, as follows:

(S, νD, νN) � Γ (x,X) if (νD(x), νN(X)) ∈ γ;
(S, νD, νN) � x = y if νD(x) = νD(y);
(S, νD, νN) � X = Y if νN(X) = νN(Y);
(S, νD, νN) � e1 ∨ e2 if (S, νD, νN) � e1 or (S, νD, νN) � e2;
(S, νD, νN) � ¬e if (S, νD, νN) � e;
(S, νD, νN) � ∃x e if there exists o ∈ D with (S, νD[x �→ o], νN) � e;
(S, νD, νN) � ∃X e if there existsn ∈ Nwith (S, νD, νN[X �→ n]) � e.

Above, M [α �→ β] denotes M modified by mapping α to β.
Let e be a partial SyCALC formula with free object variables x1, . . . , xm and

free set name variables X1, . . . , Xn, and let S = (N, γ) be a structure. We define
the evaluation of e on S by [[e]]S = {〈o1, . . . , om,n1, . . . ,nn〉 | (S, νD, νN) � e} in
which νD = {x1 �→ o1, . . . , xm �→ om} and νN = {X1 �→ n1, . . . , Xn �→ nn}. A
SyCALC query is a partial SyCALC formula without free set name variables.5

Example 3.1. Queries Q1 and Q3–Q7 are all expressible in SyCALC:

Q1 = {〈x〉 | ∃X1∃X2 ((X1 �= X2) ∧ Γ (x,X1) ∧ Γ (x,X2))};
Q3 = {〈x, y〉 | (x �= y) ∧ ∃X (Γ (x,X) ∧ Γ (y,X))};
Q4 = {〈x, y〉 | (x �= y) ∧ ∀X (Γ (x,X) ⇐⇒ Γ (y,X))};
Q5 = {〈〉 | ∃X∃x∃y∃z ((x �= y) ∧ (x �= z) ∧ (y �= z) ∧

Γ (x,X) ∧ Γ (y,X) ∧ Γ (z,X))};
Q6 = {〈〉 | ∃X1∃X2∃X3 ((X1 �= X2) ∧ (X1 �= X3) ∧ (X2 �= X3))};
Q7 = {〈〉 | ∃x∃y1∃y2 ((x �= y1) ∧ (x �= y2) ∧ (y1 �= y2) ∧

(∀X (Γ (x,X) ⇐⇒ (Γ (y1,X) ∨ Γ (y2,X)))))}.

Not all counting-only queries are in SyCALC. An example is the 1-counting-
only query Q2 [15] (see also Proposition 5.3). Also, not all SyCALC queries are
counting-only. To show this, we must exhibit a SyCALC query Q and, for every
k, k ≥ 0, a pair of k-counting-equivalent structures S1,k and S2,k, such that
Q can distinguish S1,k and S2,k. To do so, we generalize the ideas underlying
Example 2.4:

Proposition 3.2. Let A be a finite nonempty itemset, and S1,A and S2,A struc-
tures respectively representing the bags of sets {T | T ⊆ A and even(|A − T|)}
and {T | T ⊆ A and odd(|A − T|)}. We have the following:

(i) S1,A is (|A| − 1)-counting-equivalent to S2,A.
(ii) S1,A is not exactly-|A|-counting-equivalent to S2,A.
(iii) Only one of the structures has a set name to which no objects are related.

5 We also write a SyCALC query e as {〈x1, . . . , xm〉 | e} to show the free object variables
and their order explicitly.

232 J. Hellings et al.

Proof. Statement (ii) follows from the observation that only the itemset A has
|A| objects, and only S1 has a set name that covers this itemset. Statement (iii)
follows from the observation that ∅ is represented only in S1—if even(|A|)—or
only in S2—if odd(|A|). We now turn to Statement (i). Let k = |A| and I � A an
itemset with |I| = m. We must prove that [[count(I)]]S1 = [[count(I)]]S2 . Consider
any itemset T with I ⊆ T ⊆ A. Let |T| = n. As T contains the objects of I,
there remain n − m unconstrained objects in A − I. Hence, there are exactly(

k−m
n−m

)
of such sets T. Thus,

[[count(I)]]S1 =
∑

m≤n≤k,
even(k−n)

(
k−m
n−m

)
=

∑
0≤j≤k−m,

even(k−m−j)

(
k−m

j

)
= 2k−m−1

=
∑

0≤j≤k−m,
odd(k−m−j)

(
k−m

j

)
=

∑
m≤n≤k,
odd(k−n)

(
k−m
n−m

)
= [[count(I)]]S2 ,

completing the proof. ��
Using Proposition 3.2, we can now prove the following:

Proposition 3.3. Not all Boolean SyCALC queries are counting-only.

Proof. For all k, k ≥ 0, let Ak ⊂ D be a set of objects with |Ak| = k + 1, and
let S1,Ak

and S2,Ak
be as in Proposition 3.2. We see that the Boolean SyCALC

query

Q8 = {〈〉 | ∃X∀x (∃Y (Γ (x, Y)) =⇒ Γ (x,X))}
cannot be counting-only, since [[Q8]]S1,Ak

= true and [[Q8]]S2,Ak
= false. ��

Even though not all counting-only queries are in SyCALC and vice versa, there
is a strong connection between both: all basic gcount(·) terms are expressible in
SyCALC. E.g., gcount(X;Y) ≥ c is expressed by

∃Z1 . . . ∃Zc

(∧
1≤i<j≤c (Zi �= Zj) ∧ ∧

x∈X

(
Γ (x,Z1) ∧ · · · ∧ Γ (x,Zc)

) ∧
∧

y∈Y

(¬Γ (y, Z1) ∧ · · · ∧ ¬Γ (y, Zc)
))

.

4 QuineCALC and SimpleCALC

In Sect. 3, we studied the counting-only SyCALC queries, a semantic fragment
of SyCALC. The observation that the SyCALC expression for gcount(X;Y) ≥ c
above, which can be used to express most queries we have seen up till now,
does not use object quantification inspires us to define the following syntactic
fragments of SyCALC:

Definition 4.1. QuineCALC6 consist of all SyCALC queries that do not use
object quantification. SimpleCALC consists of all queries that are built from
QuineCALC queries using disjunction, negation, and object quantification.
6 Gyssens et al. [11] introduced the single-object-variable fragment of QuineCALC as

a first-order query language that provides a conservative extension of the symmetric
Boolean functions of Quine [16], hence the name.

First-Order Definable Counting-Only Queries 233

For k ≥ 0, k-SyCALC denotes the k-counting-only SyCALC queries; Quine-
CALC-k denotes the QuineCALC queries with at most k free object variables; and
SimpleCALC-k denotes the SimpleCALC queries built from QuineCALC-k queries.

By definition, all queries expressible using basic gcount(·) terms only, such
as Q1 and Q3–Q7, are in SimpleCALC. We will show next that all SimpleCALC-k
queries are k-counting-only. To do so, we need

Definition 4.2. Let S1 = (N1, γ1) and S2 = (N2, γ2) be structures, and let I be
an itemset. Set names n1 ∈ N1 and n2 ∈ N2 are I-equivalent if objects(n1;S1)∩
I = objects(n2;S2) ∩ I. A bijection b : N1 → N2 is an I-preserving mapping if,
for all n ∈ N1, n and b(n) are I-equivalent.

We can now give an alternative characterization of k-counting equivalence:

Lemma 4.3. Let S1 = (N1, γ1) and S2 = (N2, γ2) be structures. Then, S1 and
S2 are k-counting-equivalent if and only if, for every itemset I, |I| ≤ k, there
exists an I-preserving mapping b : N1 → N2.

Using Lemma 4.3, a straightforward structural induction argument on partial
QuineCALC formulae—partial SyCALC formula without object quantification—
yields the following:

Lemma 4.4. Let e be a partial QuineCALC formula with k free object variables.
For every pair of k-counting-equivalent structures S1 = (N1, γ1), S2 = (N2, γ2),
every mapping νD from free object variables in e to an itemset I ⊂ D with
|I| ≤ k, every mapping νN1 from free set name variables in e to N1, and every I-
preserving mapping b from S1 to S2, (S1, νD, νN1) � e ⇐⇒ (S2, νD, b◦νN1) � e.

Lemma 4.4 implies that QuineCALC-k queries are k-counting-only. To extend
this to SimpleCALC-k, it suffices to show that

Proposition 4.5. k-SyCALC is closed under disjunction, negation, and object
quantification.

Corollary 4.6. All QuineCALC-k and SimpleCALC-k queries are in k-SyCALC .

5 Counting-Only Hierarchies

We now have four hierarchies of counting-only queries, for k ≥ 0: k-counting-
only queries, k-SyCALC, QuineCALC-k, and SimpleCALC-k. We show that all four
hierarchies are non-collapsing:

Theorem 5.1. Let k ≥ 0.

(i) Every k-counting-only query is also (k+1)-counting-only.
(ii) There is QuineCALC-(k+1) query which is not k-counting-only.
(iii) There is a Boolean SimpleCALC-(k+1) query which is not k-counting-only.

234 J. Hellings et al.

Proof. Statement (i) follows immediately from the definition. For Statements (ii)
and (iii), let S1,A and S2,A be the structures of Proposition 3.2 with |A| = k +1.
These structures are k-counting-equivalent, but not (k+1)-counting-equivalent.
For Statement (ii), we consider e = ∃X

(∧
1≤i≤k+1 Γ (xi,X)

)
, which is a (k+1)-

counting-only QuineCALC-(k+1) query by Corollary 4.6. Let t be a (k+1)-tuple
containing each value of A once. Then, t ∈ [[e]]S1 , but t /∈ [[e]]S2 . Hence, e is not k-
counting-only. For Statement (iii), we construct from e the Boolean SimpleCALC-
(k+1) query e′ = ∃x1 . . . xk+1

((∧
1≤j<j′≤k+1 (xj �= xj′)

) ∧ e(x1, . . . , xk+1)
)

Then, [[e′]]S1 = true and [[e′]]S2 = false. Hence, e′ is not k-counting-only. ��
Statement (iii) can be interpreted as the Boolean version of Statement (ii).

Since QuineCALC-k and SimpleCALC-k queries are also k-SyCALC queries as well
as k-counting queries, Theorem5.1 extends to all four hierarchies.

We now proceed by comparing the fragments mutually. The 0-counting-only
fragments have straightforward relationships:

Proposition 5.2. The languages 0-SyCALC , SimpleCALC-0, and QuineCALC-0
all express exactly the same set of queries.

We have already argued that the 1-counting-only query Q2 is not first-order
definable [15]. Also the 0-counting-only query

Q9 = {〈〉 | count() is even}

is not first-order definable. Consequently, we have:

Proposition 5.3. There is a Boolean 0-counting-only query not expressible in
SyCALC .

By Proposition 5.3 and Theorem 5.1 (i), Q9 also witnesses that, for all k, k ≥ 0,
there is a Boolean k-counting-only queries not expressible in k-SyCALC.

Due to QuineCALC queries not allowing object quantification, all Boolean
QuineCALC queries are in QuineCALC-0. Hence, no Boolean query that is k-
counting-only, k ≥ 1, but not (k-1)-counting-only is expressible in QuineCALC-k.
Hence, it only remains to establish a separation between k-SyCALC and Simple-
CALC-k. We first deal with the special case k = 1.

Proposition 5.4. There is a Boolean 1-SyCALC query not expressible in
SimpleCALC-1.

Proof. The Boolean 1-SyCALC query

Q10 = {〈〉 | ∃x∃y ((x �= y) ∧ ∃X∃Y (Γ (x,X) ∧ Γ (y, Y)))},

which queries for structures with an active domain of at least two objects, is
1-counting-only but not expressible in SimpleCALC-1. ��

First-Order Definable Counting-Only Queries 235

To establish the separation between k-SyCALC and SimpleCALC-k, k ≥ 2, we
exhibit a 2-SyCALC query, which is not 1-counting-only, that is not expressible
in SimpleCALC. Thereto, let

set-ids =| ∀X∃x (Γ (x,X) ∧ ¬∃Y ((X �= Y) ∧ Γ (x, Y)))

be the Boolean query specifying that each set in a bag of sets has a distinct
identifying object. We first prove that set-ids is in 2-SyCALC, but not in 1-Sy-
CALC, despite it using only a single object variable.

Proposition 5.5. Query set-ids is 2-counting-only, but not 1-counting-only.

Proof. Let o1, o2 ∈ D and n1,n2 ∈ N . Let S1 = ({n1,n2}, {(o1,n1), (o2,n2)})
and S2 = ({n1,n2}, {(o1,n1), (o2,n1)}). Since S1 and S2 are 1-counting-
equivalent, while [[set-ids]]S1 = true and [[set-ids]]S2 = false, set-ids is not
1-counting-only. For a structure S = (N, γ) with |N| = n, [[set-ids]]S = true
if and only if there exist o1, . . . , on ∈ adom(S) such that, for all i, 1 ≤ i ≤ n,
[[count(oi)]]S = 1 and, for all i, j, 1 ≤ i < j ≤ n, [[count(oi, oj)]]S = 0. By
Proposition 2.8, set-ids is 2-counting-only. ��

Observe that set-ids can only evaluate to true on a structure if the size of
its active domain is lowerbounded by the number of set names in the structure.
This contradicts set-ids being expressible in SimpleCALC provided we can prove
that whenever a SimpleCALC query evaluates to true on some structure, it also
evaluates to true on some structure for which the size of the active domain
is upperbounded by a function of the size of the query only. Thereto, we start
with QuineCALC queries. If a QuineCALC query returns on some structure the
tuple t, we can intuitively reduce the number of active-domain objects in that
structure to the number of object variables in the query without compromising
that t is returned, because all object variables are free. In order to substantiate
this intuition, we introduce the notion of active-domain preservation:

Definition 5.6. Let S = (N, γ) be a structure and I an itemset. A bijection
m : D → D is active-domain preserving for S and I if it is the identity on
adom(S|I), and maps objects to D − adom(S|I) only if they are in D − adom(S).

Notice that m is not necessarily the identity on all of I.
For QuineCALC queries with k (free) object variables, we can use active-

domain preservation to state in a precise way that, for our purposes, we can
restrict the active domain of structures to k objects:

Proposition 5.7. Let e be a partial QuineCALC formula with k object variables.
For every structure S = (N, γ), mapping νD from object variables in e to an
itemset I ⊂ D with |I| ≤ k, mapping νN from free set name variables in e to
N, and active-domain preserving mapping m for S and I, (S, νD, νN) � e ⇐⇒
(S|I,m ◦ νD, νN) � e.

To generalize Proposition 5.7 to SimpleCALC, we need to take into account
object quantification:

236 J. Hellings et al.

Definition 5.8. Let e be a SimpleCALC query. We denote the object variable
count of e by vars(e). If e is a QuineCALC query with k (free) object variables,
then vars(e) = k; if e ≡ ¬e′ or e ≡ ∃x e′, then vars(e) = vars(e′); and if
e ≡ e1 ∨ e2, then vars(e) = vars(e1) + vars(e2).

Proposition 5.9. Let e be a SimpleCALC query with k free object variables, S =
(N, γ) a structure, and νD a mapping from free object variables in e to an itemset
I ⊂ D with |I| ≤ k. There exists an itemset V with I ⊆ V and |V| ≤ vars(e) such
that, for every itemset W with V ⊆ W and active-domain preserving mapping
m for S and W, we have (S, νD, ∅) � e if and only if (S|W,m ◦ νD, ∅) � e.

We can now prove that set-ids is not expressible in SimpleCALC:

Proposition 5.10. The query set-ids is not expressible in SimpleCALC .

Proof. Assume there exists a (Boolean) SimpleCALC query e such that, for every
structure S, [[e]]S = [[set-ids]]S. Let n = vars(e)+1, {o0, . . . , on} an itemset, and
N = {n0, . . . ,nn} ⊂ N . Let Sn+1 = (N, {(oi,ni) | 0 ≤ i ≤ n + 1}), and Sn =
(N, {(oi,ni) | 1 ≤ i ≤ n}). Hence, Sn = Sn+1|W with W = {o1, . . . , on}. By
construction, [[e]]Sn+1 �= ∅ and [[e]]Sn

= ∅. By Proposition 5.9, however, [[e]]Sn+1 =
∅ ⇐⇒ [[e]]Sn

= ∅, a contradiction. Hence, set-ids is not expressible in Simple-
CALC. ��
Corollary 5.11. There is a Boolean 2-SyCALC query not expressible in Simple-
CALC .

6 Dichotomy for Satisfiability-Related Decision Problems

We study the decidability of satisfiability, validity, query containment, and query
equivalence for the query languages we introduced. We first observe the following:

Lemma 6.1. Let L be k-SyCALC or SimpleCALC-k, and p1 and p2 two deci-
sion problems chosen from satisfiability, validity, query containment, and query
equivalence. Then p1 is decidable for L if and only if p2 is decidable for L.

Because of Lemma 6.1, we only study the satisfiability problem in more detail.

6.1 Satisfiability of SimpleCALC is Decidable

To prove that satisfiability is decidable for queries in SimpleCALC, we show that
this language has the finite model property : a query is satisfiable if and only if
it is satisfiable in a structure of which the size (in terms of the number of set
names and active domain objects) is uniformly bounded in terms of the size
of the query. Proposition 5.9 gives an upperbound on the required number of
active domain objects. To also obtain an upperbound on the required number of
set names, we consider that SyCALC is essentially a two-sorted variant of first-
order logic. Intuitively, this puts severe restrictions to the ability of SyCALC and
SimpleCALC to count. We formalize this intuition next.

First-Order Definable Counting-Only Queries 237

Definition 6.2. Let k, d ≥ 0. Structures S1 = (N1, γ1) and S2 = (N2, γ2)
are d-partial k-counting-equivalent if, for every pair of itemsets I and E with
|I ∪ E| ≤ k, either

(i) [[gcount(I;E)]]S1 = [[gcount(I;E)]]S2 ≤ d; or
(ii) d < [[gcount(I;E)]]S1 < |N1| − d and d < [[gcount(I;E)]]S2 < |N2| − d; or
(iii) |N1| − [[gcount(I;E)]]S1 = |N2| − [[gcount(I;E)]]S2 ≤ d.

Even though partial counting-equivalence is a weaker condition than
counting-equivalence, it is nevertheless sufficient to establish the indistinguisha-
bility of two structures by a SyCALC query if we know its set name quantifier
depth:

Lemma 6.3. Let e be a SyCALC query with set name quantifier depth d, and let
S1 and S2 be d-partial k-counting-equivalent structures with k = |adom(S1)| =
|adom(S2)|. Then [[e]]S1 = [[e]]S2 .

Lemma 6.3 can be proved using an Ehrenfeucht-Fräıssé game in which the
Spoiler can play up to d set names and an arbitrary number of objects. We now
use this lemma to prove the following upperbound:

Proposition 6.4. Let S = (N, γ) be a structure with |adom(S)| = k, and let
d ≥ 0. There exists a structure S′ = (N′, γ′) with |N′| ≤ (d + 1) · 2k such that S
and S′ are d-partial k-counting-equivalent structures.

Proof (Sketch). Initially, S′ is empty. Then, for every itemset I of S, we add
min(d+1, [[gcount(I; adom(S)− I)]]S) relation names to N′ and associate each of
them in γ′ with precisely all elements of I. By construction, |N′| ≤ (d + 1) · 2k.
It is then verified that S and S′ are d-partial k-counting-equivalent. ��

Combining Propositions 5.9 and 6.4 proves that SimpleCALC has the finite
model property and that the size of these finite models is uniformly upper-
bounded by an exponential function of the query size. Hence, the satisfiability
problem is decidable. Using a reduction involving monadic first-order logic (over
structures with only unary relations), for which satisfiability is NEXPTIME-
complete [3,14], we can also prove a lowerbound on the complexity of the satis-
fiability problem:

Theorem 6.5. Satisfiability is decidable for SimpleCALC queries, and is NEXP-
TIME-hard for SimpleCALC-k query, k ≥ 2.

Proof (Sketch). Let S = (M;X1, . . . , Xn) be a first-order structure over domain
M with unary predicates X1, . . . , Xn and ϕ a first-order logic formula over S
without free variables. We encode the first-order structure S into bag-of-sets
structure. To do so, we represent the unary predicates X1, . . . , Xn by set names
n1, . . . ,nn. In SimpleCALC, we cannot freely use set name quantification, how-
ever. We solve this by associating to each set name ni a unique identifying object
oi, 1 ≤ i ≤ n. The domain element of M are represented by objects distinct

238 J. Hellings et al.

from o1, . . . , on, and translate predicate membership tests into count(·, ·) terms.
In summary, we encode S by a structure S = (N, γ) with N = {n1, . . . ,nn} and
γ = {(o1,n1), . . . , (on,nn)} ∪ {(m,ni) | m ∈ M ∧ Xi(m)}, in which m is the
object representing m. We now translate ϕ to the expression e given by

count() = n ∧ ∃y1 . . . ∃yn

(
τ(ϕ) ∧ (∧

1≤i≤n

count(yi) = 1
) ∧

(∧

1≤i<j≤n

count(yi, yj) = 0
))

,

in which τ(ϕ) is the translation of ϕ obtained by replacing all subformula ∃y ϕ′ by
∃y (

∧
1≤i≤n(y �= yi)∧τ(ϕ′(y)) and all terms of the form Xi(b) by count(b, yi) = 1.

Using Lemma 6.10, one can prove that the resulting Boolean formula e is in
SimpleCALC-2, and that e is satisfiable if and only if the monadic first-order
logic formula ϕ is satisfiable. ��

6.2 Satisfiability of 1-SyCALC is Decidable

By Propositions 5.2, the decidability of the satisfiability problem for 0-SyCALC
follows from the decidability of the satisfiability problem for SimpleCALC-1. This
does not extend to 1-SyCALC, unfortunately, but we can still prove that the
satisfiability problem for 1-SyCALC is decidable. Again, we show that the finite
model property holds. First, we put an upperbound on the number of set names.

Proposition 6.6. Let d ≥ 0, and let S = (N, γ) be a structure. There exists
a structure S′ = (N′, γ′) with |N′| ≤ 2d + 1 such that S and S′ are d-partial
1-counting-equivalent structures.

Proof. If |N| ≤ 2d + 1, we put S′ = S, and Proposition 6.6 trivially holds.
Otherwise, let N′ = {n1, . . . ,n2d+1} and

γ′ = {(o,ni) | ([[count(o)]]S ≤ d) ∧ (1 ≤ i ≤ [[count(o)]]S)} ∪
{(o,ni) | (d < ([[count(o)]]S) < |N| − d) ∧ (1 ≤ i ≤ d + 1)} ∪
{(o,ni) | (|N| − d ≤ [[count(o)]]S) ∧ (1 ≤ i ≤ 2d + 1 − (|N| − [[count(o)]]S)}.

Using that, for o ∈ D and S′′ = (N′′, γ′′) any structure, [[gcount(o; ∅)]]S′′ =
[[count(o)]]S′′ and [[gcount(∅; o)]]S′′ = |N′′| − [[count(o)]]S′′ , we can verify that S
and S′ are d-partial 1-counting-equivalent structures. ��

Next, we put an upper bound on the number of objects.

Proposition 6.7. Let e be a 1-SyCALC query with set name quantifier depth d
and object quantifier depth r, and let S = (N, γ) be a structure. Then, [[e]]S �= ∅ if
and only if there exists a structure S′ = (N′, γ′) with |N′| ≤ 2d+1, |adom(S′)| ≤
r(2d + 1), and [[e]]S′ �= ∅.

First-Order Definable Counting-Only Queries 239

Proof (Sketch). By Proposition 6.6, we may assume without loss of generality
that |N| ≤ 2d + 1. Let N′ = {n1, . . . ,n|N|} and Ii = {o | [[count(o)]]S = i},
1 ≤ i ≤ |N|. Since S and S′′ = (N′, γ′′) where γ′′ = {(o,nj) | (1 ≤ j ≤ i ≤
|N|) ∧ (o ∈ Ii)} are 1-counting-equivalent, [[e]]S′′ = [[e]]S. Choose Pi ⊆ Ii such
that |Pi| = min(|Ii|, r), 1 ≤ i ≤ |N|, and let S′ = (N′, γ′) where γ′ = {(o,nj) |
(1 ≤ j ≤ i ≤ |N|) ∧ (o ∈ Pi)}. We can show that e cannot distinguish between
S′ and S using an Ehrenfeucht-Fräıssé game in which the Spoiler can play up to
r objects and an arbitrary number of set names. ��

Propositions 6.6 and 6.7 combined prove that 1-SyCALC has the finite model
property and that the size of these finite models is uniformly upperbounded by
a polynomial function of the query size. Hence,

Theorem 6.8. The satisfiability problem is decidable for 1-SyCALC queries.

6.3 Satisfiability of 2-SyCALC is Undecidable

To prove undecidability of satisfiability for 2-SyCALC, we reduce satisfiability of
standard first-order logic queries on undirected unlabeled graphs without self-
loops, a well-known undecidable problem,7 to satisfiability of the strict fragment
of 2-SyCALC that does not allow object comparisons (of the form x = y).

An undirected unlabeled graph without self-loops, or graph, for short, is a pair
G = (V,E) in which V is a set of nodes and E ⊆ V×V is an antireflexive and
symmetric edge relation. On such graphs we consider standard first-order logic
formulae of the form e := x1 = x2 | E(x1, x2) | e ∨ e | ¬e | ∃x e, in which x1, x2,
and x are node variables. We write [[e]]G to denote the evaluation of e on G.

We define the encoding of G = (V,E) as the structure enc(G) = (N, γ)
where N = V and γ = {({x1, x2}, x1), ({x1, x2}, x2) | (x1, x2) ∈ E} ∪ {({x}, x) |
x ∈ V}. The active domain consists of node-pair sets, representing the edges of
G, and singleton node sets, serving as distinctive identifying objects. Each node
pair set has a support of 2, identifying the end-points of the edge represented.
The structure enc(G) always satisfies the following Boolean SyCALC query:

enc-graph = set-ids ∧ ∀x∃X1∃X2 (((X1 �= X2) ∧ Γ (x,X1) ∧ Γ (x,X2)) ⇒
∀Y ((X1 �= Y) ∧ (X2 �= Y) ⇒ ¬Γ (x, Y))).

If ν converts node variables in a first-order logic formula on graphs ϕ, then the
corresponding translation τ(ϕ)ν into a SyCALC query is defined as follows:

τ(x1 = x2)ν ≡ ν(x1) = ν(x2);
τ(E(x1, x2))ν ≡ (ν(x1) �= ν(x2)) ∧ ∃x (Γ (x, ν(x1)) ∧ Γ (x, ν(x2)));

τ(e1 ∨ e2)ν ≡ τ(e1)ν ∨ τ(e2)ν ;
τ(¬e)ν ≡ ¬τ(e)ν ;

τ(∃x e)ν ≡ ∃X τ(e)ν[x�→X],

7 We have no direct reference, but if we use a straightforward encoding from binary
relations to undirected unlabeled graphs without self-loops, we can rely on Trakht-
enbrot’s Theorem [15, Theorem 9.2].

240 J. Hellings et al.

with X a fresh set name variable. We define the encoding of a Boolean first-order
logic formula on graphs ϕ in SyCALC as enc(ϕ) = enc-graph∧τ(ϕ)∅. Obviously,

Lemma 6.9. Let G be a graph and let ϕ be a Boolean first-order logic formula
on graphs. Then, [[ϕ]]G = [[enc(ϕ)]]enc(G).

Next, we prove that, for any first-order Boolean logic formula ϕ on graphs,
enc(ϕ) is a Boolean 2-SyCALC query. We do so by proving that 2-counting-
equivalent structures satisfying the Boolean 2-SyCALC query set-ids must be
isomorphic.

Lemma 6.10. If S1 and S2 are structures that are 2-counting-equivalent, and
[[set-ids]]S1 = [[set-ids]]S2 = true, then S1 and S2 are isomorphic.

Corollary 6.11. If ϕ is a Boolean first-order logic formula on graphs, then
enc(ϕ) is a 2-SyCALC query.

Now, let S be a structure for which [[enc(ϕ)]]S �= ∅, with ϕ a Boolean first-
order logic formula. For the last step in our reduction, we must find a graph GS

such that [[ϕ]]GS
�= ∅. Ideally, we would like that, up to isomorphism, enc(GS) =

S, but that can unfortunately not be guaranteed. Nevertheless, we can construct
a graph GS for which [[ϕ]]GS

�= ∅:

Lemma 6.12. Let ϕ be a Boolean first-order logic formula on graphs. If there
exists a structure S satisfying enc(ϕ), then we can construct from S a graph
satisfying ϕ.

Using Lemmas 6.9 and 6.12, we conclude the following:

Theorem 6.13. The satisfiability problem is undecidable for 2-SyCALC queries.

7 Conclusion and Discussion

In this paper, we studied so-called counting-only queries on bag-of-sets data,
which can be answered by only counting the occurrence of itemsets of objects.
In particular, we identified and studied the syntactic counting-only fragments
QuineCALC and SimpleCALC of first-order logic. These query languages can
express many practically relevant queries other than the usual classes of “well-
behaved” first-order queries—such as the conjunctive queries, the monadic first-
order logic, and the two-variable fragments of first-order logic—while, at the
same time, still being simple enough for satisfiability, validity, query contain-
ment, and query equivalence to be decidable. We have summarized our findings
in Fig. 3.

First-Order Definable Counting-Only Queries 241

Counting-only queries

First-order definable queries (SyCALC)
Q8

...
...

...
...

QuineCALC-1

QuineCALC-2

QuineCALC-3

QuineCALC

Q1

Q3, Q4

SimpleCALC-1

SimpleCALC-2

SimpleCALC-3

SimpleCALC

Q5

Q7

1-SyCALC

2-SyCALC

3-SyCALC

Counting-only
SyCALC

set-ids

Q10

QuineCALC-0 ≡ SimpleCALC-0 ≡ 0-SyCALC
Q6

3-counting-only queries

2-counting-only queries

1-counting-only queries
Q2

0-counting-only queries
Q9

Fig. 3. Main relationships between the query languages considered. The counting-only
languages are highlighted in light gray, and the first-order definable languages in dark
gray. A language to the left and/or below another language, is less expressive than the
latter. Separate boxes also indicate strict separation in expressive power. The exam-
ple queries Q1–Q6 (Introduction), Q7 (Example 2.6), Q8 (Proof of Proposition 3.3), Q9
(Proof of Proposition 5.3), and Q10 (Proof of Proposition 5.4) are added to the smallest
language in which they can be expressed. The medium-dark gray area indicates the
first-order definable counting-only queries for which satisfiability is not decidable.

We have identified several directions for future research:

1. In this paper, we have studied the formal aspect of counting-only first-order
queries, but we have not yet studied practical issues such as query evalua-
tion. Since the queries we study are all first-order queries, we can, off course,
borrow standard techniques from first-order logic for their evaluation. One
may wonder, however, if some of the more restricted classes considered in
this paper allow for more efficient query evaluation, for example by using
specialized counting-only index structures.
As an example, consider queries using generalized count-term predicates,
which are all expressible in SimpleCALC. Queries based on generalized count-
term predicates provide a direct connection to an underlying frequent itemset
problems, which can be exploited to further optimize query equivalence. A
good example of such a technique is the FP-tree, used by the FP-Growth
Algorithm, which can be used as an index to quickly find candidate sets of
up-to-k-objects that have a minimum count [6,12], and prune away all other
sets of up-to-k-objects without any counting. Due to these implementation
optimization opportunities and the prevalence of counting-only queries, we
believe that the evaluation of these simple counting-only queries and their
relationship to frequent itemset mining deserves a deeper understanding.

242 J. Hellings et al.

2. In the Introduction, we have already mentioned that the bag-of-sets data
model and the notion of counting-only query can easily be generalized, e.g.,
to a model with relations between more than two disjoint domains. Therefore,
it is only natural to wonder if the concepts we developed generalize to a richer
data model without giving up on the well-behaved nature of SimpleCALC.

3. From a more theoretical perspective, there are several open problems for
further investigation. For example, the precise complexity of the decision
problems for SimpleCALC-k, k ≥ 0, remains open. Crucial in pinpointing
an exact upperbound is finding the exact upperbound on the complexity of
model checking. We also want to study the decidability of whether a given
(k + 1)-counting-only query is also k-counting-only.

4. Counting is only one type of measure that can be used to define practi-
cal queries on bag-of-sets data, and we have seen that taking counting into
account leads to naturally definable and well-behaved query languages. Many
other practical types of measure exist [18], hence it is only natural to ask if
these measures can be captured in an encompassing framework that leads,
for each measure, to naturally definable and well-behaved query languages.

5. As we have shown in this paper, not all counting-only queries are first-order
definable. To express some of these queries, one might consider augmenting
first-order logic with non-first-order definable counting-based quantifiers [13].
We believe that it is worthwhile to study whether one can construct such
query languages while, at the same time, retain the well-behaved nature of
SimpleCALC.

References

1. Abiteboul, S., Hull, R., Vianu, V. (eds.): Foundations of Databases: The Logical
Level. Addison-Wesley, Reading (1995)

2. Anderson, I.: Combinatorics of Finite Sets. Dover Publications, Mineola (2011)
3. Bachmair, L., Ganzinger, H., Waldmann, U.: Set constraints are the monadic class.

In: Proceedings of the 8th Annual IEEE Symposium on Logic in Computer Science,
pp. 75–83 (1993)

4. Badia, A., Van Gucht, D., Gyssens, M.: Querying with generalized quantifiers.
In: Ramakrishnan, R. (ed.) Applications of Logic Databases. SECS, vol. 296, pp.
235–258. Springer, Boston (1995). https://doi.org/10.1007/978-1-4615-2207-2 11

5. Bayer, A.E., Smart, J.C., McLaughlin, G.W.: Mapping intellectual structure of a
scientific subfield through author cocitations. J. Am. Soc. Inf. Sci. Tech. 41(6),
444–452 (1990)

6. Calders, T., Goethals, B.: Non-derivable itemset mining. Data Min. Knowl. Discov.
14(1), 171–206 (2007)

7. Fletcher, G.H.L., Van Den Bussche, J., Van Gucht, D., Vansummeren, S.: Towards
a theory of search queries. ACM Trans. Database Syst. 35(4), 28:1–28:33 (2010)

8. Goethals, B.: Survey on frequent pattern mining. Technical report, University of
Helsinki (2003)

9. Grädel, E., Otto, M.: On logics with two variables. Theor. Comput. Sci. 224(1–2),
73–113 (1999)

10. Grohe, M.: Finite variable logics in descriptive complexity theory. Bull. Symb. Log.
4, 345–398 (1998)

https://doi.org/10.1007/978-1-4615-2207-2_11

First-Order Definable Counting-Only Queries 243

11. Gyssens, M., Paredaens, J., Van Gucht, D., Wijsen, J., Wu, Y.: An approach
towards the study of symmetric queries. Proc. VLDB Endow. 7(1), 25–36 (2013)

12. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–
87 (2004)

13. Kuske, D., Schweikardt, N.: First-order logic with counting. In: 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, pp. 1–12 (2017)

14. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput.
Syst. Sci. 21(3), 317–353 (1980)

15. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-662-07003-1

16. Quine, W.V.: Selected Logic Papers. Harvard University Press, Cambridge (1995)
17. Sayrafi, B., Van Gucht, D.: Differential constraints. In: Proceedings of the 24th

Symposium on Principles of Database Systems, pp. 348–357. ACM (2005)
18. Sayrafi, B., Van Gucht, D., Gyssens, M.: Measures in databases and data mining.

Technical report TR602, Indiana University (2004). https://www.cs.indiana.edu/
cgi-bin/techreports/TRNNN.cgi?trnum=TR602

19. Väänänen, J.: Generalized quantifiers, an introduction. In: Väänänen, J. (ed.) ESS-
LLI 1997. LNCS, vol. 1754, pp. 1–17. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-46583-9 1

https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR602
https://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.cgi?trnum=TR602
https://doi.org/10.1007/3-540-46583-9_1
https://doi.org/10.1007/3-540-46583-9_1

The Power of Tarski’s Relation Algebra
on Trees

Jelle Hellings1(B), Yuqing Wu2, Marc Gyssens1, and Dirk Van Gucht3

1 Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
jelle.hellings@uhasselt.be

2 Pomona College, 185 E 6th Street, Claremont, CA 91711, USA
3 Indiana University, 150 S. Woodlawn Avenue, Bloomington, IN 47405, USA

Abstract. Fragments of Tarski’s relation algebra form the basis of many
versatile graph and tree query languages including the regular path
queries, XPath, and SPARQL. Surprisingly, however, a systematic study
of the relative expressive power of relation algebra fragments on trees
has not yet been undertaken. Our approach is to start from a basic frag-
ment which only allows composition and union. We then study how the
expressive power of the query language changes if we add diversity, con-
verse, projections, coprojections, intersections, and/or difference, both
for path queries and Boolean queries. For path queries, we found that
adding intersection and difference yields more expressive power for some
fragments, while adding one of the other operators always yields more
expressive power. For Boolean queries, we obtain a similar picture for
the relative expressive power, except for a few fragments where adding
converse or projection yields no more expressive power. One challenging
problem remains open, however, for both path and Boolean queries: does
adding difference yields more expressive power to fragments containing
at least diversity, coprojections, and intersection?

1 Introduction

Trees can be used to model data that has a hierarchical or nested structure
including taxonomies, organizational charts, documents, genealogies, and file
and directory structures. It is therefore not surprising that tree data models have
been continuously studied since the 1960s [5,9,25]. Modern query languages for
querying tree data have a heavy reliance on navigating the tree structure. Prime
examples of this are XPath [4,6,7,22] and the various JSON query languages [19].
At its core, this navigation can be captured by fragments of Tarski’s relation
algebra [24]. Consequently, tree querying based on fragments of the relation
algebra has already been studied in great detail (e.g. [3,16,17,26]). Unfortunately,
these studies only covered some very basic fragments of the relation algebra,
and a comprehensive study of all relation algebra fragments has not yet been
undertaken.

This material is based on work supported by the National Science Foundation under
Grant No. NSF 1438990.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 244–264, 2018.
https://doi.org/10.1007/978-3-319-90050-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_14&domain=pdf

The Power of Tarski’s Relation Algebra on Trees 245

In this work, we undertake such a comprehensive study by investigating the
relative expressive power of fragments of the relation algebra with respect to
both path queries and Boolean queries. Concretely, the basic relation algebra
fragment N () we start from only allows the constants empty-set and identity (∅
and id), edge labels, and the operators composition and union (◦ and ∪). This
fragment allows for basic querying based on navigating alongside the parent-child
axis and corresponds with the first-order fragment of the regular path queries
(RPQs) [8]. We study how the expressive power changes if we add the remain-
ing relation algebra constants and operators. This includes adding converse (−1)
which enables navigation alongside the child-parent axis, yielding the first-order
fragment of the 2RPQs [1]. We also add projections (π1 and π2) which enable
simultaneous navigation alongside several branches in the tree, yielding the first-
order fragment of the nested RPQs [2]. As it turns out, the first-order fragments
of the RPQs, 2RPQs, and nested RPQs are rather weak on trees. To increase
their expressive power, we consider adding diversity (di) and intersection (∩).
The diversity constant evaluates to all pairs of distinct nodes and combined
with intersection this constant can be used to, e.g., construct all pairs of distinct
siblings. This enables branching and counting queries, even on unlabeled struc-
tures. Finally, we study adding negation in the form of coprojections (π1 and π2)
and difference (−). All the above notations that are at the basis of this study
can be found in Sect. 2.

Unfortunately, the relative simplicity of the tree data model turns out to be
a curse rather than a blessing: compared to the graph data model [10–12,24],
this simplicity makes it much more difficult to establish separation results using
strong brute-force methods. Consequently, the study on trees forces us to search
for deeper methods to reach our goals. Therefore, we believe that our study
not only gives insight in the expressive power of the relation algebra and its
fragments, but also contributes to a better understanding of the fundamental
differences between graph data models and tree data models. The main contri-
bution presented in this paper is the introduction of several properties that can
be used to categorize relation algebra fragments according to their expressive
power. This in turn yields several separation results on trees:

1. Recognizing branches and siblings. The language N () can only query trees by
navigating alongside a single path from ancestor to descendant. Consequently,
no query in N () can distinguish between chains and trees. Other query lan-
guages support recognizing branching up to a certain degree, and we can
classify these languages accordingly. To do so, we introduce a notion called
k-subtree reductions in Sect. 3. Languages that are closed under k-subtree-
reduction steps allow the removal of a child of a node that is structurally
equivalent to at least k other children of that node without changing the
outcome of Boolean queries. First, the query language N (−1, π, π,∩) is 1-
subtree-reducible and, consequently, can only recognize siblings if they are
not structurally equivalent. Next, query languages N (F) with di ∈ F and
∩ /∈ F are 2-subtree-reducible and can, in very limited circumstances, dis-
tinguish up to two structurally equivalent children of a node. Finally the

246 J. Hellings et al.

full relation algebra is 3-subtree-reducible, and query languages N (F) with
{−1,−} ⊆ F or {di,∩} ⊆ F can always distinguish between nodes that have
one, two, or at least three structurally equivalent children.

2. Local queries versus non-local queries. Queries in N (F) with F ⊆ {−1, π, π,
∩,−} yield node pairs (m,n) such that one can navigate between m and n by
traversing a number of edges, with the number depending only on the length
of the query. Hence, we call these query languages local. Diversity is intrinsi-
cally non-local . From this observation, it follows that languages with diversity
are not path-equivalent to local query languages. This can be strengthened
towards Boolean inequivalence, as diversity can, in many cases, be used to
express non-local properties on which trees and chains can be distinguished.
We do so in Sect. 4 by exploiting the fact that many properties on which trees
and chains can be distinguished are non-local and rely on a limited form of
counting. A simple example of this are chain queries of the form “are there k
edges in the chain labeled with edge-label �”.

3. Downward queries versus non-downward queries. Queries in N (F) with F ⊆
{π, π,∩,−} yield node pairs (m,n) such that one can navigate from m to
n by traversing along a sequence of parent-child axes. Hence, we call these
query languages downward [16,17]. We observe that these downward query
languages are all 1-subtree-reducible, which puts an upper bound on their
expressive power. Diversity and the converse operator are non-downward in
nature. Based on this observation, it follows that languages with diversity or
converse are not path-equivalent to downward query languages.

4. Monotonicity. A query language is monotone if, for every query q, every
graph G, and every graph G′ obtained by adding nodes and edges to G, we
have [[q]]G ⊆ [[q]]G′ . One the one hand, one can show that the query language
N (di, −1, π,∩) is monotone [16,17]. On the other hand, the query languages
N (F) with π ∈ F are non-monotone. For example, we only need coprojec-
tions to construct a Boolean query that puts an upper bound on the length
of a chain. Such queries are not monotone and consequently not expressible
in N (di, −1, π,∩).

In Fig. 1, we visualize the above categorization, which yields an initial clas-
sification of the expressive power of the query languages we study on trees. It
does not provide all details, however, which we will start to unravel in this paper,
mainly in Sects. 3 and 4. For an index on how specific results are proven, we refer
the reader to Fig. 12.

Some separation results are obtained through brute-force methods, which
we will show in Sect. 5. Besides separation results, we also establish collapse
results in this paper. In Sect. 6, we obtain these by introducing a notion called
condition tree queries for the local relation algebra fragments. They prove to be
a powerful tool to show that intersection never adds expressive power beyond
the ability to express projections. We also use this tool to establish limitations
on the expressive power of projections in Boolean queries.

What remains open is whether adding difference to the fragments containing
diversity, coprojections (and hence also projections), and intersection yields a

The Power of Tarski’s Relation Algebra on Trees 247

N (∩, −)
N (π, ∩)

N (π, π, ∩, −) N (−1, π, π, ∩)

N (−1, π, ∩)

N (di, −1, π)

N (di, −1, π, π)

N (−1, π, π, ∩, −)

N (di, −1, π, ∩)

N

Fig. 1. Initial classification of the relative expressive power of fragments of the relation
algebra with respect to path queries on labeled trees. In each box, the largest frag-
ment(s) that satisfy the classification of that particular box are included. The more to
the right and to the top a certain box is situated, the stronger the expressiveness of
the corresponding fragment(s) become.

collapse or separation, even in the presence of converse. We claim this a very
challenging open case, and we consider identifying it as the third major contribu-
tion of this paper. We discuss this open case in Sect. 8, in which we also discuss
other directions for future research.

2 Preliminaries1

A graph is a triple G = (V, Σ,E), with V a finite set of nodes, Σ a finite set
of labels, and E : Σ → 2V×V a function mapping labels to edge relations. We
denote by E the union of all edge relations. If |Σ| = 1, G is unlabeled. A tree
T = (V, Σ,E) is a connected acyclic graph in which one node, the root, has
no incoming edges, and all other nodes have one incoming edge. In an edge
(m,n) ∈ E , m is the parent of n, and n a child of m. A chain is a tree in which
all nodes have at most one child.

In this paper, we limit our study to queries on trees and chains. A query q
maps a tree to a set of node pairs. We write [[q]]T to denote the evaluation of q
on tree T . We can interpret a query q literally as a path query, or, alternatively,
as a Boolean query, in which case True stands for [[q]]T 	= ∅.

The syntax of a relation algebra expression is given by

e := ∅ | id | di | � | e−1 | πj [e] | πj [e] | e ◦ e | e ∪ e | e ∩ e | e − e,

where � ∈ Σ and j ∈ {1, 2}. Its evaluation on a tree T = (V, Σ,E) is defined by

[[∅]]T = ∅;
[[id]]T = {(m,m) | m ∈ V};

1 Our formalization of graphs, the relation algebra, and equivalence notions is adapted
from concepts used by Fletcher et al. [10,11].

248 J. Hellings et al.

� �

� �

m

n

Fig. 2. A labeled tree that matches π1[�] ◦ � ◦ π1[�] ◦ � exactly.

[[di]]T = {(m,n) | m,n ∈ V ∧ m 	= n};
[[�]]T = E (�) ;

[[e−1]]T = {(n,m) | (m,n) ∈ [[e]]T };
[[π1[e]]]T = {(m,m) | ∃n (m,n) ∈ [[e]]T };
[[π2[e]]]T = {(n, n) | ∃m (m,n) ∈ [[e]]T };
[[πj [e]]]T = [[id]]T − [[πj [e]]]T ;

[[e1 ◦ e2]]T = {(m,n) | ∃z ((m, z) ∈ [[e1]]T ∧ (z, n) ∈ [[e2]]T)};
[[e1 ⊕ e2]]T = [[e1]]T ⊕ [[e2]]T (with ⊕ ∈ {∪,∩,−}).

Notice that it suffices to consider converse (−1) at the level of labels only. If an
expression always evaluates to a subset of id, as is the case for projections and
coprojections, then it is called a node expression.

Example 1. Consider the labeled tree in Fig. 2. The expression e = π1[�] ◦ � ◦
π1[�] ◦ � matches this tree structure, and will return the node pair (m,n). The
expressions (�−1 ◦ �) ∩ di and (�−1 ◦ �) − id both return pairs of siblings in the
tree.

For k > 0, we write Ek to represent k-fold composition of E and E−k for its
converse, we use E0 to denote id, [E]+ to denote the descendant-axis defined by
[E]+ =

⋃
k>0 Ek, and [E−1]+ to denote the ancestor-axis defined by [E−1]+ =⋃

k>0 E−k. Given F ⊆ {di, −1, π, π,∩,−}, N (F) denotes the relation algebra
fragment in which only the atoms ∅, � ∈ Σ, and id, the operators ◦ and ∪, and
all operators in F are allowed. In the above, we used π as shorthand for π1 and
π2, and π as shorthand for π1 and π2.

Let q1 and q2 be expressions. We say that q1 and q2 are path-equivalent,
denoted by q1 ≡path q2, if, for every tree T , [[q1]]T = [[q2]]T and are Boolean-
equivalent, denoted by q1 ≡bool q2, if, for every tree T , [[q1]]T 	= ∅ ⇐⇒ [[q2]]T 	= ∅.
Let z ∈ {path,bool}. We say that the class of expressions L1 is z-subsumed by
the class of expressions L2, denoted by L1 �z L2, if every expression in L1 is
z-equivalent to an expression in L2. In this connection, the following rewrite
rules can be used to express operators using other operators:

The Power of Tarski’s Relation Algebra on Trees 249

π1[e] = π2[e−1] = πj [π1[e]] = (e ◦ e−1) ∩ id = (e ◦ (di ∪ id)) ∩ id (j ∈ {1, 2});
π2[e] = π1[e−1] = πj [π2[e]] = (e−1 ◦ e) ∩ id = ((di ∪ id) ◦ e) ∩ id (j ∈ {1, 2});
π1[e] = π2[e−1] = id − π1[e];
π2[e] = π1[e−1] = id − π2[e];

e1 ∩ e2 = e1 − (e1 − e2).

For F ⊆ {di, −1, π, π,∩,−}, F denotes the closure of F under the rules above.2

Example 2. The equivalence e1 ∩ e2 ≡path e1 − (e1 − e2) is well-known. Hence,
also e1 ∩ e2 ≡bool e1 − (e1 − e2). We also have π1[�] ≡bool � ≡bool π2[�], but
π1[�] 	≡path � and � 	≡path π2[�]. Finally, let e be the expression as in Example 1.
We have e ≡path �1 ◦ �−1

1 ◦ �2 ◦ �3 ◦ �−1
3 ◦ �4.

3 Subtree Reductions

Most relation algebra fragments are able to detect obvious labeled branching in
trees.

Example 3. Consider the expressions e1 = (�1)−1 ◦ �2 and e2 = π1[�1] ◦ π1[�2],
which are Boolean-equivalent. Clearly, for any tree T we have [[ei]]T 	= ∅, i ∈
{1, 2} only if T has a node with at least two children, one reachable via an edge
labeled �1 and another via an edge labeled �2.

Detecting branches in the situation above, where a single node has several
structurally distinct branches, is relatively simple. Next, we look at which lan-
guage fragments are able to detect branching if all branches are structurally
identical. As a first step towards this goal, we derive limitations on the expres-
sive power of relation algebra fragments, taking advantage of the simple structure
of trees. Thereto, we introduce subtree-reduction steps.

Let k > 0. A k-subtree-reduction step on tree T = (V, Σ,E) consists of
first finding different nodes m,n1, . . . , nk+1 ∈ V and an edge label � ∈ Σ such
that (m,n1), . . . , (m,nk+1) ∈ E (�) and the subtrees rooted at n1, . . . , nk+1 are
isomorphic, and then picking a node ni, 1 ≤ i ≤ k+1, and removing the subtree
rooted at ni.

Definition 4. We say that a tree is k-subtree-reducible if we can apply a k-
subtree-reduction step.3

Example 5. Consider the unlabeled trees T1, T2, and T3 in Fig. 3. The tree T1

can be obtained by a 1-subtree-reduction step on T2 and T2 can be obtained

2 The basic atoms and operators, ∅, � ∈ Σ, id, ◦, and ∪ are left implicit because they
are assumed to be present in every fragment.

3 The 1-subtree reductions bear a close relationship to the F+B-index and the F&B-
index used for indexing the structure of tree data [20].

250 J. Hellings et al.

Fig. 3. Trees T1, T2, and tree T3 from Example 5 and the proof of Proposition 7.

by a 2-subtree-reduction step on T3. Consequently, T1 can also be obtained by
two 1-subtree-reduction steps on T3. Hence, T2 is 1-subtree-reducible and T3 is
1-subtree-reducible and 2-subtree-reducible.

We now exhibit conditions under which the result of a relation algebra expres-
sion is invariant under subtree reduction at the Boolean level.

Proposition 6. Let F ⊆ {di, −1, π, π,∩,−}, e an expression in N (F), T a tree,
and T ′ obtained from T by a k-subtree-reduction step. Each of the following
conditions separately implies [[e]]T 	= ∅ ⇐⇒ [[e]]T ′ 	= ∅:

(i) k ≥ 3;
(ii) k = 2 and ∩ /∈ F; and
(iii) k = 1 and {di,−} ∩ F = ∅.

Proof (sketch). Using k-pebble games [13,14,21], we can see that [[q]]T 	= ∅ ⇐⇒
[[q]]T ′ 	= ∅ if q is a query in FO[k], which is first-order logic restricted to k
variables. Since the relation algebra and FO[3] path-subsume each other [12,24],
(i) follows. In Statement (ii), F ⊆ {di, −1, π, π}. Hence, by a result of Hellings
et al. [18, Theorem 6.1], (ii) also follows.4 To prove (iii), let T = (V, Σ,E) and
T ′ = (V ′, Σ′,E′). Let n1, n2 ∈ V be the siblings in T such that T ′ is obtained
from T by eliminating the subtree rooted at n2. Let V1 and V2 be the nodes in
the subtrees of T rooted at n1 and n2, respectively, and let b : V1 → V2 be a
bijection establishing that these subtrees are isomorphic. Let g be the identity
on V − (V1 ∪ V2), and let f = b ∪ b−1 ∪ g. Since f is an automorphism of T , we
have, for m,n ∈ V, (m,n) ∈ [[e]]T ⇐⇒ (f(m), f(n)) ∈ [[e]]T . By induction on
the length of e, one can prove that, if (m,n) ∈ V1 ×V2 or (m,n) ∈ V2 ×V1, then
(m,n) ∈ [[e]]T =⇒ (f(m), n) ∈ [[e]]T . Since f = f−1, it then also follows that, if
(m,n) ∈ V1 × V2 or (m,n) ∈ V2 × V1, then (m,n) ∈ [[e]]T =⇒ (m, f(n)) ∈ [[e]]T .
A final induction on the length of e then yields that, for m′, n′ ∈ V ′, (m′, n′) ∈
[[e]]T ⇐⇒ (m′, n′) ∈ [[e]]T ′ . Hence, [[e]]T 	= ∅ ⇐⇒ [[e]]T ′ 	= ∅, ��

From the limitations imposed by Proposition 6 on the Boolean expressive
power of the fragments considered, we deduce the following separation results:

Proposition 7. Already on unlabeled trees, we have N (di) �bool N (−1, π, π,∩),
N (−1,−) �bool N (−1, π, π,∩), and N (di,∩) �bool N (di, −1, π, π).

Proof. Consider the unlabeled trees T1, T2, and T3 in Example 5. Since T1 can
be obtained by a 1-subtree-reduction on T2, we have, by Proposition 6(iii), that,

4 Notice that in the formalism of Hellings et al. [18], projection is considered to be a
standard operator.

The Power of Tarski’s Relation Algebra on Trees 251

for every e in N (−1, π, π,∩), [[e]]T2 	= ∅ ⇐⇒ [[e]]T1 	= ∅. Now consider e1 =
E ◦ di ◦ di ◦ E in N (di) and e2 = (E−1 ◦ E) − id in N (−1,−). We have [[e1]]T2 	= ∅
and [[e2]]T2 	= ∅, while [[e1]]T1 = [[e2]]T1 = ∅, establishing the first and second
separations. Since T2 can be obtained by a 2-subtree-reduction on T3, we have,
by Proposition 6(ii), that, for every e in N (di, −1, π, π), [[e]]T3 	= ∅ ⇐⇒ [[e]]T2 	= ∅.
Now consider e3 = (((di ◦ E) ∩ di) ◦ ((di ◦ E) ∩ di)) ∩ di in N (di,∩). We have
[[e3]]T3 	= ∅, while [[e3]]T2 = ∅, establishing the third separation. ��

The proof of Proposition 7 relies on languages being able to distinguish at
least one, two, or three structurally equivalent children of a node. To do so, the
proof uses minimal languages that satisfy the conditions of Proposition 6. Hence,
the classification provided by k-subtree-reductions is strict.

4 The Power of Diversity

Relation algebra expressions without diversity can only inspect a local neigh-
borhood around a given node. With respect to path queries, this puts obvious
limitations on the expressive power of language fragments that do not contain
diversity. With respect to Boolean queries, the situation is more subtle. To study
this in more detail, we first define the notion of locality:

Definition 8. Given a tree, and disregarding the direction of its edges, the dis-
tance between two nodes is the number of edges on the unique shortest path
between them. A query q is local if there exists k ≥ 0 such that, for every tree
T , and for all nodes m and n, (m,n) ∈ [[q]]T ⇐⇒ (m,n) ∈ [[q]]T ′ , with T ′ the
smallest subtree of T containing all nodes at distance at most k from the nearest
common ancestor of m and n.

By an induction on their length, it can be shown that all expressions in
N (−1, π, π,∩,−) are local.

4.1 Adding Diversity to Local Fragments

As already noticed, diversity always adds power to a local relation algebra frag-
ment at the path level, as it can construct non-local relation algebra expressions.
We can also use this property to our advantage to prove that diversity often adds
expressive power at the Boolean level, too.

Proposition 9. Already on unlabeled trees, N (di,∩) �bool N (−1, π, π,∩,−).

Proof. By the rewrite rules at the end of Sect. 2, N (di, π,∩) �path N (di,∩).
Consider the expression e = P2,¬r ◦ di ◦ P2,¬r in which P2,¬r = π2[E] ◦ P2,
P2 = π1[S2], and S2 = (E ◦ di) ∩ E . The expression e selects node pairs among
distinct non-root nodes such that each node in the pair has at least two distinct
children. Now, assume there exists an expression e′ in N (−1, π, π,∩,−) such
that e ≡bool e′. Since e′ is local, we know there exists k ≥ 0 such that e′

252 J. Hellings et al.

r

m1 m2
′

r′

m′
1 m′

2

Fig. 4. Trees T and T ′ in the proof of Proposition 9. The symbol represents a
chain of k edges, with k as in that proof.

C �� �′�′�′

m2m1

C′ � �′�′

Fig. 5. Chains C and C′ in the proof of Proposition 10. The symbol represents
a chain of 2k edges all labeled �′, with k as in that proof.

satisfies Definition 8. Now consider the trees T and T ′ shown in Fig. 4. Clearly,
[[e]]T ⊇ {(m1,m2)} 	= ∅ and [[e]]T ′ = ∅. By e ≡bool e′, we must have [[e′]]T 	= ∅. Let
(m,n) ∈ [[e′]]T . Since every subtree of T containing all nodes at distance at most
k from some given node is contained in a subtree of T that is isomorphic to T ′,
we may conclude that [[e′]]T ′ 	= ∅. However, [[e]]T ′ = ∅, contradicting e ≡bool e′.
Hence, no expression in N (−1, π, π,∩,−) is Boolean-equivalent to e. ��

We can use a similar locality argument for two more separations:

Proposition 10. Already on chains, we have N (di, −1) �bool N (−1, π, π,∩,−)
and N (di, π) �bool N (−1, π, π,∩,−).

Proof. Consider the path-equivalent expressions e1 = (� ◦ �−1) ◦ di ◦ (� ◦ �−1)
in N (di, −1) and e2 = π1[�] ◦ di ◦ π1[�] in N (di, π), and let e be either e1 or
e2. Now, assume there exists an expression e′ in N (−1, π, π,∩,−) such that
e ≡bool e′. Since e′ is local, we know there exists k ≥ 0 such that e′ satisfies
Definition 8. Now consider the chains C and C′ shown in Fig. 5. Clearly, [[e]]C ⊇
{(m1,m2)} 	= ∅. Hence, [[e′]]C 	= ∅. By e ≡bool e′, we must have [[e′]]T 	= ∅. Let
(m,n) ∈ [[e′]]T . Notice that every subchain of C containing all nodes at distance at
most k from some given node is a subchain of C of length at most 2k. Since each
such subchain of C is isomorphic to some subchain of C′, we may conclude that
[[e′]]C′ 	= ∅. However, [[e]]C′ = ∅, contradicting e ≡bool e′. Hence, no expression in
N (−1, π, π,∩,−) is Boolean-equivalent to e. ��

Observe that the separation N (di,∩) �bool N (−1, π, π,∩,−) also holds on
chains, because the expression e3 = (�◦di∩ id)◦di◦(�◦di∩ id) is path-equivalent
to e1 and e2 in the proof of Proposition 10.

4.2 Adding Other Operators to Non-local Fragments

The erratic behavior of diversity in the non-local relation algebra fragments on
trees (allowing one to jump from any node to any other node in a tree) makes

The Power of Tarski’s Relation Algebra on Trees 253

studying the expressive power of these fragments inherently difficult. Luckily, we
can obtain several separation results by studying these fragments on chains.

For local expressions on chains, we have the following:

Lemma 11. Let F ⊆ {−1, π, π,∩,−}, and e be a union-free expression in
N (F).5 There exists k ≥ 0 such that, for every chain C, [[e]]C ⊆ [[Ek]]C or
[[e]]C ⊆ [[E−k]]C.

Lemma 11 simplifies the reasoning about local expressions on chains. In addi-
tion, diversity on chains can be expressed using the ancestor axis and the descen-
dant axis, as di = [E]+ ∪ [E−1]+. While the descendant and ancestor axes are
not operators of the fragments considered in this paper, we can still use them in
intermediate steps to rewrite expressions that contain di. This in turn allows us
to simplify projection terms that contain di, as we show next.

Lemma 12. Let F ⊆ {di, −1, π} and πj [e], j ∈ {1, 2}, be an expression in N (F).
There exists a finite set S of expressions of the form π1[Ev] ◦ π2[Ew], v, w ≥ 0,
such that, on unlabeled chains, πj [e] ≡path

⋃
S.

Proof. We have di ≡path [E]+ ∪ [E−1]+. We also have π2[e] ≡path π1[e−1]. Hence,
every projection expression πj [e], j ∈ {1, 2}, can be written as a union of expres-
sions of the form π1[e′] in which e′ is built over the atoms id, E , E−1, [E]+, and
[E−1]+, using the operators ◦ and π1.6 We shall call such expressions e′ normal
in the remainder of this proof. So, it remains to show that Lemma12 holds for
expressions π1[e′], with e′ normal. We do this by structural induction on e′. We
have the following base cases:

π1[id] ≡path id ≡path π1[E0] ◦ π2[E0];

π1[E] ≡path π1[[E]+] ≡path π1[E1] ◦ π2[E0];

π1[E−1] ≡path π1[[E−1]+] ≡path π1[E0] ◦ π2[E1].

Now, assume that Lemma 12 holds for expressions π1[e′′], with e′′ a normal
expression containing at most i operators, i ≥ 0, and let e = π1[e′] with e′ a
normal expression containing i + 1 operators. Then either e′ = π1[e′

1] or e′ =
e′
1 ◦ e′

2, with e′
1 and e′

2 normal expressions containing at most i operators. In the
first case, e ≡path π1[e′

1], and Lemma 12 holds for e by the induction hypothesis.
In the second case, we have that e = π1[e′

1 ◦ e′
2] ≡path π1[e′

1 ◦ π1[e′
2]]. By the

induction hypothesis, e′
2 is path-equivalent to a finite union of expressions of the

form π1[Ev2] ◦ π2[Ew2], v2, w2 ≥ 0. For e′
1, we distinguish again two cases:

1. Expression e′
1 = π1[e′′

1], with e′′
1 again a normal expression containing at most

i operators. Hence, by the induction hypothesis, e′
1 is path-equivalent to a

finite union of expressions of the form π1[Ev1] ◦ π2[Ew1], v1, w1 ≥ 0. It now
suffices to observe that

5 Observe that, in relation algebra expressions, unions can always be pushed out to
the outermost level.

6 Recall from Sect. 2 that we need to consider converse only at the level of edges.

254 J. Hellings et al.

π1[Ev1] ◦ π2[Ew1] ◦ π1[Ev1] ◦ π2[Ew1] ≡path π1[Emax(v1,v2)] ◦ π2[Emax(w1,w2)]

to conclude that Lemma 12 holds for e.
2. In the other case, we can assume without loss of generality that e′

1 is an atom.
Hence, it suffices to observe that, for v, w ≥ 0,

π1[id ◦ (π1[Ev] ◦ π2[Ew])] ≡path π1[Ev] ◦ π2[Ew];

π1[E ◦ (π1[Ev] ◦ π2[Ew])] ≡path π1[Ev+1] ◦ π2[Emax(0,w−1)];

π1[E−1◦ (π1[Ev] ◦ π2[Ew])] ≡path π1[Emax(0,v−1)] ◦ π2[Ew+1];

π1[[E]+◦ (π1[Ev] ◦ π2[Ew])] ≡path

⋃
1≤i≤max(1,w) π1[Ev+i] ◦ π2[Emax(0,w−i)];

π1[[E−1]+◦ (π1[Ev] ◦ π2[Ew])] ≡path

⋃
1≤i≤max(1,v) π1[Emax(0,v−i)] ◦ π2[Ew+i].

to conclude that Lemma 12 holds for e in this case, too. ��

Example 13. Consider the expression e = π1[di ◦ E ◦ E]. We have

e ≡path π1[[E]+ ◦ π1[E2] ◦ π2[E0]] ∪ π1[[E−1]+ ◦ π1[E2] ◦ π2[E0]]

≡path π1[π1[E3] ◦ π2[E0]] ∪ π1[π1[E1] ◦ π2[E1]] ∪ π1[π1[E0] ◦ π2[E2]]

≡path π1[E3] ◦ π2[E0] ∪ π1[E1] ◦ π2[E1] ∪ π1[E0] ◦ π2[E2].

As Example 13 shows, we can use Lemma 12 to partially eliminate diversity
from non-local expressions on unlabeled chains, and then use locality-based argu-
ments on subexpressions to establish the following separations:

Proposition 14. Already on unlabeled chains, N (di,∩) �path N (di, −1, π),
N (−1) �path N (di, π), and N (π) �path N (di).

Proof. Consider the expression e = (di ◦ E) ∩ di in N (di,∩). On a chain, this
expression yields all pairs of distinct non-root nodes that are not edges. Now,
assume there exists an expression e′ in N (di, −1, π) such that, on unlabeled
chains, e ≡path e′. Since e is non-local, e′ must be non-local, too, hence, it must
contain diversity. Using Lemma 12, we can rewrite e′ into a union of terms each
of which is a composition of units of the form id, di, E , E−1, π1[Ev], or π2[Ew],
v, w ≥ 0. Let t = t1 ◦ · · · ◦ tn be such a term in which at least one unit is
diversity (di). Since on chains di ≡path [E]+ ∪ [E−1]+, t is path-equivalent to
the infinite union

⋃
k1,...,kn �=0 t1k1 ◦ · · · ◦ tnkn

in which tiki
= ti if ti 	= di and

tiki
= Eki if ti = di, 1 ≤ i ≤ n. For a term t1k1 ◦ · · · ◦ tnkn

in this infinite
union, we define exp(t1k1 ◦ · · · ◦ tnkn

) =
∑

1≤i≤n exp(tiki
), where exp(tiki

) = 1
if tiki

= E ; exp(tiki
) = −1 if tiki

= E−1; exp(tiki
) = ki if tiki

= Eki ; and
exp(tiki

) = 0 otherwise. Since t contains at least one diversity unit, the set
{exp(t1k1 ◦ · · · ◦ tnkn

) | k1, . . . , kn 	= 0} covers all integer numbers with at most
one exception (there is exactly one exception if t contains exactly one diversity
unit). We can therefore choose a term t′ = t1k1 ◦ · · · ◦ tnkn

for which exp(t′) = 0
or exp(t′) = 1. Now, choose an unlabeled chain C which is sufficiently long
to ensure that for the local expression t′ in N (−1, π), [[t′]]C 	= ∅. Then, [[t′]]C

The Power of Tarski’s Relation Algebra on Trees 255

Fig. 6. The unlabeled tree T in the proof of Proposition 15.

contains either an identical node pair (if exp(t′) = 0) or an edge (if exp(t′) = 1).
Hence, by construction, [[e′]]C contains either an identical node pair or an edge,
contradicting e ≡path e′. Hence, no expression in N (di, −1, π) is path-equivalent
to e.

Using similar arguments, we can prove that E−1 cannot be expressed in
N (di, π) and that π1[E] and π2[E] cannot be expressed in N (di) to establish the
other two statements of Proposition 14. ��

5 Brute-Force Results

Using a brute-force approach in the style of Fletcher et al. [10], we establish
several separations, both at the path and Boolean levels. At the core of these
brute-force results is the observation than one can effectively compute the set
of query results obtainable by queries in some relation algebra fragment N (F),
F ⊆ {di, −1, π, π,∩,−}, on a given graph. We refer to Fletcher et al. [10] and
Hellings [15] for further details.

For path separations between languages L1 and L2, we may conclude that
L1 �path L2 if there exists a query q in L1 and a tree T such that no query in
L2 evaluates to [[q]]T . Using this approach, we prove the following.

Proposition 15. Already on unlabeled trees, we have N (−1) �path N (di, π, π)
and N (π) �path N (−1).

Proof. Consider the expressions e1 = E−1 and e2 = π1[E] ◦ π2[E], and let T be
the tree in Fig. 6. An exhaustive search reveals that no expression in N (di, π, π)
evaluates to [[e1]]T and no expression in N (−1) evaluates to [[e2]]T . ��

At the Boolean level, the key notion in the brute-force approach is the ability
to distinguish a pair of trees. We say that a query q distinguishes a pair of trees
T1 and T2 if [[q]]T1 = ∅ and [[q]]T2 	= ∅, or vice versa. Given two languages L1 and
L2, we may conclude that L1 �bool L2 if we can find a query q in L1 and a pair
of trees T1 and T2, indistinguishable by any query in L2, but distinguishable by
q. Using this approach, we prove the following.

Proposition 16. Already on unlabeled trees, we have N (di, −1) �bool N (di),
N (di, π) �bool N (di), N (di, −1,∩) �bool N (di, π, π,∩,−), and N (di, π) �bool

N (di, −1).

Proof. Consider the following four expressions:

e1 = (E−2 ◦ E) ◦ di ◦ (E−1 ◦ E2);
e2 = (E ◦ π1[E]) ◦ di ◦ (π2[E] ◦ E);

256 J. Hellings et al.

=

= ′ ′ ′′

Fig. 7. Pairs of unlabeled trees (Ti, T ′
i), 1 ≤ i ≤ 4, in the proof of Proposition 16.

e3 = (((E−1 ◦ E) ∩ di) ◦ ((E−1 ◦ E) ∩ di)) ∩ di;

e4 = (E2 ◦ E−1) ◦ di ◦ π1[E−1 ◦ E2] ◦ di ◦ π1[E−1 ◦ E2] ◦ di ◦ (E ◦ E−2),

and let (Ti, T ′
i), 1 ≤ i ≤ 4, be the trees in Fig. 7. We have [[ei]]Ti

= ∅ and
[[ei]]T ′

i
	= ∅, and [[e2]]T1 = ∅ and [[e1]]T ′

1
	= ∅. Observe that e4 is in N (di, −1, π),

but, by Proposition 34, e4 is Boolean-equivalent to an expression in N (di, π). An
exhaustive search reveals that no expression in N (di) can distinguish T1 = T2

from T ′
1 = T ′

2 ; no expression in N (di, π, π,∩,−) can distinguish T3 from T ′
3 ; and

no expression in N (di, −1) can distinguish T4 from T ′
4 . ��

6 Collapse Results

In Sects. 3, 4, and 5, we focused on separation results. Here, we focus on collapse
results. The key tool to prove these are what we call condition tree queries, a
generalization of the tree queries of Wu et al. [26], which were used to prove
Proposition 30 (see Sect. 7 on related work).

6.1 Condition Tree Queries

We first define condition tree queries syntactically and semantically:

Definition 17. A condition tree query is a tuple Q = (T , C, s, t, γ), where T =
(V, Σ,E) is a tree, C is a set of node expressions that represent node conditions,
s ∈ V is the source node, t ∈ V is the target node, and γ ⊆ V × C is the
node-condition relation. We write γ(n) to denote the set {c | (n, c) ∈ γ}.

Let T ′ = (V ′, Σ,E′) be a tree. Then, [[Q]]T ′ consists of all the node pairs
(m,n) ∈ V ′ × V ′ for which there exists a mapping f : V → V ′ satisfying the
following conditions:

(i) f(s) = m and f(t) = n;
(ii) for all v ∈ V and c ∈ γ(v), (f(v), f(v)) ∈ [[c]]T ′ ; and
(iii) for all � ∈ Σ and (v, w) ∈ E (�), (f(v), f(w)) ∈ E′ (�).

We slightly extend Definition 17 to allow the empty condition tree where
V = ∅ and s and t have some null value. On every tree, the empty condition tree
evaluates to the empty set.

The Power of Tarski’s Relation Algebra on Trees 257

�2 �3

�1 �3

�1 �2

s t

{π2[�3]}

Fig. 8. The condition tree query of Example 18.

Example 18. The condition tree query Q in Fig. 8 selects a node pair (s, t) if
the following tree traversal steps are all successful: (1) from s, go up via two
edges labeled �1 and �2; (2) check if the node where we have arrived satisfies the
condition π2[�3]; (3) from there, go down via two edges labeled �3, after which we
arrive at t; and (4) check if t has outgoing edges labeled �1 and �2. The condition
tree query Q is path-equivalent to the expression �−1

1 ◦�−1
2 ◦π2[�3]◦�3◦�3◦π1[�1]◦

π1[�2], in N (−1, π).

In the remainder of this subsection, we formalize the relationship between
condition tree queries and relation algebra expressions exhibited in Example 18.
Thereto, let F ⊆ {−1, π, π}, and let Qtree(F) be the class of all condition tree
queries in which node conditions are restricted to union-free expressions in N (F).
We claim that, for F = {−1, π} or F = {−1, π, π}, Qtree(F) and the class of all
union-free expressions in N (F) path-subsume each other.

Using a straightforward rewriting argument, we can show the following:

Proposition 19. Let F ⊆ {−1, π, π}, and e be a union-free expression in N (F).
There exists a condition tree query Q in Qtree(F) such that e ≡path Q.

For the translation in the other direction, we introduce up-down queries:

Definition 20. An up-down query is a condition tree query Q = (T , C, s, t, γ)
in which all edges of T are on the unique path from s to t not taking into account
the direction of the edges.

Example 21. An up-down query can look like a chain if the target node is an
ancestor of the source node, or vice versa, as illustrated by Fig. 9, left. This up-
down query is path-equivalent to π2[�3] ◦ �−1

2 ◦ �−1
1 . The condition tree query in

the middle is not up-down, but is path-equivalent to the up-down tree query on
the right. Observe that the right query is obtained by pushing the parts of the
tree traversal described by the middle query that are not on the path from source
to target into node conditions. The middle and right queries are path-equivalent
to π1[�2 ◦ π2[�3]] ◦ �−1

1 ◦ π2[�3] ◦ �2 ◦ π1[�2] ◦ �1.

As illustrated in Example 21, we can rewrite a condition tree query to an
up-down query by pushing into node conditions those parts of the condition tree
query not on the path from source to target:

258 J. Hellings et al.

�1

�2

s

t

{π2[�3]}

�3

�1

�2

�2

�1�2

s

t{π2[�3]}

�1 �2

�1
s

t

{π2[�3]}

{π1[�2]}{π1[�2 ◦ π2[�3]]}

Fig. 9. The condition tree query on the left is up-down. The condition tree query in
the middle is not, but this query is path-equivalent to the up-down query on the right.

Lemma 22. Let {π} ⊆ F ⊆ {−1, π, π}, and Q be a condition tree query in
Qtree(F). There exists an up-down query Q′ in Qtree(F) such that Q ≡path Q′.

As also illustrated in Example 21, an up-down query can be translated
straightforwardly into a path-equivalent relation algebra expression, provided
we have the converse operator (−1) at our disposal:

Lemma 23. Let {−1} ⊆ F ⊆ {−1, π, π}, and Q be an up-down query in Qtree(F).
There exists a union-free expression e in N (F) such that Q ≡path e.

Finally, combining Lemmas 22 and 23 yields the following:

Proposition 24. Let {−1, π} ⊆ F ⊆ {−1, π, π}, and Q be a condition tree query
in Qtree(F). There exists a union-free expression in N (F) such that Q ≡path e.

6.2 Adding Intersection to Local Fragments

Hellings et al. [16,17] already proved that adding intersection to local relation
algebra fragments not containing the converse operator (the downward relation
algebra fragments) never increases their expressive power (Proposition 31). Here,
we show that this result actually holds for all local relation algebra fragments.
As a first step, consider the following example:

Example 25. Suppose we want to compute the intersection of the two up-down
queries in Fig. 10, left. Since the two up-down queries have different heights, a pair
of nodes of a tree can only be in the result of the intersection of the two queries
on that tree if the children of the root of the second query are mapped to the
same node. Hence, we can replace the second up-down query by the one shown
in the middle. Since both queries now have the same shape and corresponding
edges have the same label, the intersection is easily obtained by merging the
node conditions, resulting in the up-down query on the right.

We now generalize Example 25:

Proposition 26. Let {π} ⊆ F ⊆ {−1, π, π}, and Q1 and Q2 be condition tree
queries in Qtree(F). There exists a condition tree query Q in Qtree(F) such that,
for every tree T , [[Q]]T = [[Q1]]T ∩ [[Q2]]T .

The Power of Tarski’s Relation Algebra on Trees 259

�1 �2

�3

s

t

{π1[�2]}

� �

�1 �2

�3

s

t

{π2[�]}

�1 �2

�3

s

t

{π2[π2[�] ◦ �]}

�1 �2

�3

s

t

{π2[π2[�] ◦ �]}

{π1[�2]}

Fig. 10. The step-wise computation of the intersection of the two up-down queries on
the left eventually results in the up-down query on the right.

Q1 Q2 Q′
2 Q

�s1,1

�s1,2

�s1,u1

�t1,1

�t1,2

�t1,d1

r1

m1,1

m1,2

m1,u1

n1,1

n1,2

n1,d1

�s2,1

�s2,2

�s2,u2

�t2,1

�t2,2

�t2,d2

r2

m2,1

m2,2

m2,u2

n2,1

n2,2

n2,d2

�s2,(Δ+1)

�s2,u2

�t2,(Δ+1)

�t2,d2

r′
2

m′
2,(Δ+1)

m′
2,u2

n′
2,(Δ+1)

n′
2,d2

�s1

�s2

�su

�t1

�t2

�td

r

m1

m2

mu

n1

n2

nd

Fig. 11. Up-down queries Q1, Q2, Q′
2 and Q in the proof of Proposition 26.

Proof (sketch). By Lemma 22, we may assume that Q1 = (T1, C1, s1, t1, γ1) and
Q2 = (T2, C2, s2, t2, γ2) are up-down queries as in Fig. 11. Let T ′ be an arbitrary
tree. If u2 − d2 	= u1 − d1, then, obviously [[Q1]]T ′ ∩ [[Q2]]T ′ = ∅. Thus, assume
u2 − d2 = u1 − d1, or, equivalently, u2 − u1 = d2 − d1. We distinguish two
cases:

1. u1 	= u2. By symmetry, assume u2 > u1. We write Δ = u2 − u1 = d2 − d1. To
find a pair of nodes of T ′ common to [[Q1]]T ′ and [[Q2]]T ′ , it is imperative that
for all i, 1 ≤ i ≤ Δ, m2,i and n2,i are mapped to the same node of T . Hence,
if for some i, 1 ≤ i ≤ Δ, �s2,i

	= �t2,i
, [[Q1]]T ′ ∩ [[Q2]]T ′ = ∅. Thus, assume for

all i, 1 ≤ i ≤ Δ, that �s2,i
= �t2,i

. Then, [[Q1]]T ′ ∩ [[Q2]]T ′ = [[Q1]]T ′ ∩ [[Q′
2]]T ′ ,

where Q′
2 = (T ′

2 , C ′
2, s

′
2, t

′
2, γ

′
2) is as in Fig. 11, with

γ′
2(r

′
2) = π2[γ2(r2) ◦ �s2,1 ◦ γ2(m2,1) ◦ γ2(n2,1) ◦ · · · ◦ �s2,Δ ◦ γ2(m2,Δ) ◦ γ2(n2,Δ)],

260 J. Hellings et al.

in which γ2(v) is a shorthand for the composition of the node expressions in
γ(v).7 For all other nodes v′ of T ′

2 , γ′
2(v

′) = γ2(v), v being the node of T2

corresponding to v′. Notice that the left (an hence also the right) branches of
Q1 and Q′

2 have equal length, which allows us to apply the next case on Q1

and Q′
2.

2. u1 = u2 = u, and hence d1 = d2 = d. To find a pair of nodes of T ′ common to
[[Q1]]T ′ and [[Q2]]T ′ , it is imperative that corresponding nodes of T1 and T2 are
mapped to the same node of T ′. Hence, if for some i, 1 ≤ i ≤ u, �s1,i

	= �s2,i
,

or for some j, 1 ≤ j ≤ d, �t1,i
	= �t2,i

, [[Q1]]T ′ ∩ [[Q2]]T ′ = ∅. Thus, assume for
all i, 1 ≤ i ≤ u, that �s1,i

= �s2,i
= �si , and, for all j, 1 ≤ j ≤ d, that �t1,i

=
�t2,i

= �ti . Then, [[Q1]]T ′ ∩ [[Q2]]T ′ = [[Q]]T ′ , where Q = (T , C1 ∪ C2, s, t, γ) is
as in Fig. 11, where, for all nodes v of T , γ(v) = γ1(v1) ◦ γ2(v2), v1 and v2
being the nodes of T1 and T2 corresponding to v. ��

Propositions 19, 24, and 26 now yield the following:

Proposition 27. For {−1, π} ⊆ F ⊆ {−1, π, π,∩}, N (F) �path N (F − {∩}).

6.3 The Boolean Equivalence of Projection and Converse

From a result by Fletcher et al. [10,11] (Proposition 34 in Sect. 7 on related work),
it follows that N (−1) �bool N (π). Here, we also prove the other direction:

Proposition 28. N (π) �bool N (−1).

Proof. Let e be an expression in N (π). By a result of Wu et al. [26, Theorem
4.1], there exists a condition-free condition tree query Q = (T , C, s, t, γ) in Qtree()
such that e ≡path Q.8 Let r be the root of T , and Qr = (T , C, r, r, γ). Obviously,
Q ≡bool Qr. Because the target node is now the root of T , the translation from
Qr to a path-equivalent up-down query (Lemma 22) only requires the first pro-
jection. Hence, there exists an up-down query Q′

r = (T ′, C ′, r′, r′, γ′) in Qtree(π1)
such that Qr ≡path Q′

r. Since source and target coincide in T ′, r′ is necessarily
the only node of T ′. Hence, Q′

r is path equivalent to the composition of the node
expressions in γ(r′), which is in N (π1). Now, a projection expression in N (π1)
can always be rewritten in the form π1[e] = π1[�1 ◦ π1[e1] ◦ · · · �n ◦ π1[en]], with
e1, . . . , en in N (π1), which is equivalent to e ◦ �−1

n ◦ · · · ◦ �−1
1 . By applying this

rewriting top-down, we conclude that N (π1) �path N (−1). ��

Hence, N (π) and N (−1) are Boolean-equivalent in expressive power.

7 Observe that the composition of node expressions is associative and that this com-
position is path-equivalent to the intersection of node expressions.

8 Recall that the tree queries in Wu et al. [26] are essentially the same as the condition-
free condition tree queries in this paper.

The Power of Tarski’s Relation Algebra on Trees 261

7 Related Work

Results on node-labeled trees are usually straightforward to translate to the edge-
labeled trees we use. Benedikt et al. [3] studied path-equivalence of N (−1, π) and
its fragments on labeled trees:

Proposition 29 ([3, Proposition 2.1]). For F1,F2 ⊆ {−1, π}, N (F1) �path

N (F2) ⇐⇒ F1⊆F2.

Where applicable, we generalize Proposition 29 to Boolean separation, in
Sect. 5. Wu et al. [26] proved a collapse result for relation algebra fragments
with intersection:9

Proposition 30 ([26, Theorem 4.1]). Both N (−1, π,∩) �path N (−1, π) and
N (−1, π,∩) �path N (−1,∩).

In Sect. 6, we generalize Proposition 30 to also include coprojections.
Finally, Hellings et al. [16,17] studied the relative expressiveness of the frag-

ments of N (π, π,∩,−),10 and obtained the following results which are used in
this study:

Proposition 31 ([16, Theorem 3]). For F ⊆ {π, π,∩,−}, N (F) �path N (F−
{∩,−}).

Proposition 32 ([17, Proposition 10]). On unlabeled chains, N (di) �path

N (π, π,∩,−) and N (−1) �path N (π, π,∩,−).

Proposition 33 ([17, Propositions 19 and 21]). We have N (π) �bool N (),
N (−1) �bool N (), and N (π) �bool N (di, −1, π,∩).

The graph query results of Fletcher et al. [10,11] include many separation
results of which the proofs do not specialize to trees. They also proved a collapse
result, that automatically does hold on trees:

Proposition 34 ([11, Proposition 4.2]). Let F ⊆ {di, −1, π, π}. On labeled
and unlabeled graphs, we have N (F ∪ {−1}) �bool N (F ∪ {π}).

Several other well-known expressiveness results are known in the context of
Conditional XPath and Navigational XPath [6,22,23], which are strongly related
to the relation algebra. Unfortunately, these results are proved with respect to
the sibling-ordered tree data model, and do not apply to our unordered tree
data model. We observe that on chains, no sibling relation exists. Hence, the
separation results we have proved on chains translate to separation results in
the sibling-ordered tree data model.

9 Strictly speaking, they deal with union-free expressions, but since unions can always
be pushed out to the outermost level, this is not a real restriction.

10 These are generally referred to as the downward fragments of the relation algebra.

262 J. Hellings et al.

Fig. 12. Index to the separation and collapse results discussed in this paper. Let
(N (F), op) be a field in the “z semantics” part of the table, z ∈ {bool, path}. A check
mark ✓ in the field (N (F), op) means that N (F∪{op}) �z N (F). A cross ✗ in the field
(N (F), op) means that N (F ∪ {op}) �z N (F). Finally, a question mark ? indicates an
open problem.

8 Conclusion and Future Work

In this paper, we settled the relative expressive power of queries in fragments
of the relation algebra when used to query trees. A summary of our results can
be found in Fig. 12. To compensate for the limited flexibility of the tree data
model, compared to the graph data model, we needed to develop several new
techniques to make this study feasible. For the local fragments, i.e., fragments
of N (−1, π, π,∩,−), we provided a complete characterization of their relative
expressive power, and with respect to the non-local fragments, only one chal-
lenging problem remains open:

Problem 35. Let {di, π,∩} ⊆ F ⊆ {di, −1, π, π,∩} and let z ∈ {bool,path}. Do
we have N (F ∪ {−}) �z N (F) or not?

The difficulties in solving this open problem are manifold. For example, con-
sider the language N (di, −1, π, π,∩). In this fairly rich query language, there
are several instances of expressions for which one can express the complement.
For k > 0, we have, e.g., E−k ≡path (E−k ◦ di) ∪ (π1[E−k] ◦ all). Unfortunately,
we have not been able yet to express complement in every instance or been
able to prove that expressing the complement is impossible in some instances.

The Power of Tarski’s Relation Algebra on Trees 263

Additional difficulties arise from the fact that we can prove that a possible sepa-
ration between N (di, −1, π, π,∩) and N (di, −1, π, π,∩,−) cannot be established
on a single pair of trees, ruling out the applicability of brute-force techniques and
many techniques developed in our work. Hence, we definitely face a challenging
open problem, which we hope to solve in the future.

Another interesting direction for future work is augmenting the relation alge-
bra with operators beyond the expressive power of FO[3]. Possible candidates
would be an iteration construct such as an ancestor-descendant axis, or the more
general and powerful Kleene-star transitive closure operator.

References

1. Barceló, P.: Querying graph databases. In: Proceedings 32nd Symposium on Prin-
ciples of Database Systems, pp. 175–188. ACM (2013)

2. Barceló, P., Pérez, J., Reutter, J.L.: Relative expressiveness of nested regular
expressions. In: Proceedings of 6th Alberto Mendelzon International Workshop
on Foundations of Data Management, pp. 180–195. CEUR Workshop Proceedings
(2012)

3. Benedikt, M., Fan, W., Kuper, G.: Structural properties of XPath fragments. Theor.
Comput. Sci. 336(1), 3–31 (2005)

4. Benedikt, M., Koch, C.: XPath leashed. ACM Comput. Surv. 41(1), 3:1–3:54
(2009)

5. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., Cowan, J.:
Extensible Markup Language (XML) 1.1 (Second Edition). W3C Recommendation,
W3C (2006). http://www.w3.org/TR/2006/REC-xml11-20060816

6. ten Cate, B.: The expressivity of XPath with transitive closure. In: Proceedings of
25th Symposium on Principles of Database Systems, pp. 328–337. ACM (2006)

7. Clark, J., DeRose, S.: XML Path Language (XPath) Version 1.0. W3C Recommen-
dation, W3C (1999). http://www.w3.org/TR/1999/REC-xpath-19991116

8. Cruz, I.F., Mendelzon, A.O., Wood, P.T.: A graphical query language supporting
recursion. In: Proceedings of 1987 ACM SIGMOD International Conference on
Management of Data, pp. 323–330. ACM, New York (1987)

9. Ecma International: The JSON data interchange format, 1st Edition (2013). http://
www.ecma-international.org/publications/standards/Ecma-404.htm

10. Fletcher, G.H.L., Gyssens, M., Leinders, D., Van den Bussche, J., Van Gucht, D.,
Vansummeren, S., Wu, Y.: Relative expressive power of navigational querying on
graphs. In: Proceedings of 14th International Conference on Database Theory, pp.
197–207. ACM (2011)

11. Fletcher, G.H.L., Gyssens, M., Leinders, D., Surinx, D., Van den Bussche, J., Van
Gucht, D., Vansummeren, S., Wu, Y.: Relative expressive power of navigational
querying on graphs. Inform. Sci. 298, 390–406 (2015)

12. Givant, S.: The calculus of relations as a foundation for mathematics. J. Autom.
Reason. 37(4), 277–322 (2006)

13. Grädel, E., Otto, M.: On logics with two variables. Theor. Comput. Sci. 224(1–2),
73–113 (1999)

14. Grohe, M.: Finite variable logics in descriptive complexity theory. Bull. Symb.
Logic 4, 345–398 (1998)

http://www.w3.org/TR/2006/REC-xml11-20060816
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm

264 J. Hellings et al.

15. Hellings, J.: On Tarski’s Relation Algebra: querying trees and chains and the semi-
join algebra. Ph.D. thesis, Hasselt University and Transnational University of Lim-
burg (2018)

16. Hellings, J., Gyssens, M., Wu, Y., Van Gucht, D., Van den Bussche, J., Vansum-
meren, S., Fletcher, G.H.L.: Relative expressive power of downward fragments of
navigational query languages on trees and chains. In: Proceedings of 15th Sympo-
sium on Database Programming Languages, pp. 59–68 (2015)

17. Hellings, J., Gyssens, M., Wu, Y., Van Gucht, D., Van den Bussche, J., Vansum-
meren, S., Fletcher, G.H.L.: Comparing downward fragments of the relational cal-
culus with transitive closure on trees. Technical report. Hasselt University (2018).
https://arxiv.org/abs/1803.01390

18. Hellings, J., Pilachowski, C.L., Van Gucht, D., Gyssens, M., Wu, Y.: From relation
algebra to semi-join algebra: an approach for graph query optimization. In: Pro-
ceedings of 16th International Symposium on Database Programming Languages,
pp. 5:1–5:10 (2017)

19. Hidders, J., Paredaens, J., Van den Bussche, J.: J-logic: logical foundations for
JSON querying. In: Proceedings of 36th Symposium on Principles of Database
Systems, pp. 137–149 (2017)

20. Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering indexes for
branching path queries. In: Proceedings of 2002 ACM SIGMOD International Con-
ference on Management of Data, pp. 133–144. ACM (2002)

21. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-662-07003-1

22. Marx, M.: Conditional XPath. ACM Trans. Database Syst. 30(4), 929–959 (2005)
23. Marx, M., de Rijke, M.: Semantic characterizations of navigational XPath. SIG-

MOD Rec. 34(2), 41–46 (2005)
24. Tarski, A.: On the calculus of relations. J. Symb. Log. 6(3), 73–89 (1941)
25. Tsichritzis, D.C., Lochovsky, F.H.: Hierarchical data-base management: a survey.

ACM Comput. Surv. 8(1), 105–123 (1976)
26. Wu, Y., Van Gucht, D., Gyssens, M., Paredaens, J.: A study of a positive fragment

of path queries: expressiveness, normal form and minimization. Comput. J. 54(7),
1091–1118 (2011)

https://arxiv.org/abs/1803.01390
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1

Improving the Performance of the
k Rare Class Nearest Neighbor Classifier

by the Ranking of Point Patterns

Zsolt László , Levente Török , and György Kovács(B)

Analytical Minds Ltd., Budapest, Hungary
zsolt.laszlo 92@yahoo.com, toroklev@gmail.com, gyuriofkovacs@gmail.com

Abstract. In most real life applications of classification, samples are
imbalanced. Usually, this is due to the difficulty of data collection. Large
margin, or instance based classifiers suffer a lot from sparsity of samples
close to the dichotomy. In this work, we propose an improvement to a
recent technique developed for rare class classification. The experimental
results show a definite performance gain.

Keywords: kNN classification · Rare class classification
Imbalanced learning · Probability smoothing · Point pattern ranking

1 Introduction

Classification is one of the most widely researched problems of machine learning
with plenty of applications in various fields of science. Contrarily to the ideal
case, real world applications usually come with imbalanced data. The umbrella
term imbalanced refers to various issues related to the distribution of the data.
Globally – due to the rare nature of a phenomenon or the high costs of sampling –
some classes may be underrepresented in the training set. Local imbalancedness
is related to the non-uniform sampling of the classes: some parts of the manifold
representing a class may be hard or expensive to sample. Even a well sampled
and globally balanced dataset may become locally imbalanced and reflect issues
related to non-uniform sampling when possibly non-linear feature transforms are
applied. Detailed overviews on imbalanced learning can be found in [1–3].

One specific class of imbalancedness called rare-class classification is char-
acterized by relatively small datasets with the positive class having extremely
low number of samples. Due to their simplicity and the ease of interpretation,
instance based methods (like the k Nearest Neighbors classifier – kNN) are widely
used on these small, sparse and imbalanced datasets. One particular field of
application is medicine as many diseases and degenerations constitute small por-
tions of the populations. Detailed overviews on the significance of instance based
learning in medical decision support can be found in [4,5]. Despite its simplicity,
improvements of kNN classification addressing the issues of imbalanced learning
are still being developed [6–10].
c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 265–283, 2018.
https://doi.org/10.1007/978-3-319-90050-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_15&domain=pdf
http://orcid.org/0000-0001-6221-6702
http://orcid.org/0000-0002-4134-4905
http://orcid.org/0000-0003-1736-0988

266 Z. László et al.

In the case of imbalanced and/or sparse data accuracy is rarely used as a
measure of performance, as the incorrect classification of the low number of
positive samples may still lead to extraordinarily accurate classification results.
The goal is usually to maximize the sensitivity of the classifier, namely, achieve
the best true positive rate (like diseased entities in medicine) at various levels of
false positive rate. The most commonly used measure to characterize this kind
of performance is the Area Under Curve (AUC), referring to the area under the
Receiver Operating Characteristic (ROC) curve. This measure quantifies how
sensitive a classifier is as the false positive rate is varied.

In this paper a new approach is proposed to improve the performance of
the recently published algorithm k Rare Class Nearest Neighbors (kRNN) [9].
Experiments on real datasets are carried out and based on the results we can
conclude that the proposed technique truly improves the performance of classi-
fication in various senses. We also highlight that the proposed method can be
integrated into other variants of the kNN classifier to improve performance.

The paper is organized as follows. In Sect. 2 we give a brief overview on
the related work, and a short introduction is given to the kRNN technique in
Sect. 3. In Sect. 4 the proposed method is described, experiments and results are
presented in Sect. 5, and finally, conclusions are drawn in Sect. 6.

2 Related Work

Many techniques have been developed to address the various issues of imbalanced
learning. Regarding the imbalanced number of samples, following the categoriza-
tion of [9], the major types are re-sampling based methods, cost-sensitive learning
techniques and learning algorithm specific solutions.

Re-sampling techniques try to fix inter-class imbalancedness by randomly
or heuristically over-sampling the minority class or undersampling the majority
class. Some widely used heuristics are Adaptive Synthetic Sampling Approach
(ADASYN) [11] and Synthetic Minority Over-sampling (SMOTE) [12]. Further
approaches can be found in [13,14] with recent Python implementations in [10].

Cost-sensitive learning techniques set higher costs for incorrectly classifying
elements of the rare class. Generality-oriented learning techniques, like decision
trees (DT) [15] and support vector machines (SVM) [16] can naturally imple-
ment cost-sensitive learning by incorporating the cost information into the loss-
function or information measure they work with. Generally, any classifier can
be turned into a cost-sensitive classifier by using the MetaCost approach [17]
(available in the commonly used WEKA [18] framework) or boosting [19] for the
minority class. The cost can be global (setting the same cost for the misclassifi-
cation of positive vectors) or instance based, assigining different cost to different
vectors [20]. With cost-sensitive learning the main challange is finding the right
cost for misclassifying some particular classes or samples. One common choice
is using the positive-negative ratio as the global cost of incorrect classification
of positive samples [9].

Improving the Performance of the k Rare Class Nearest Neighbor Classifier 267

The third strategy is adjusting the induction bias of particular learning tech-
niques to better cape with imbalanced data. The first results adjusting the induc-
tion of decision trees to compensate for the minority class come from the late
80s [21]. Recent results incorporate the confidence of a rule in the information
gain of C4.5 [22] and propose the Hellinger distance as a skew insensitive mea-
sure to improve the generalization of the minority class [23]. Genetic algorithms
are combined with decision trees in [24,25] to improve classification performance
on imbalanced data, and a kernel based approach was introduced in [26]. Tech-
niques for directly adjusting the induction bias of the specificity based kNN
algorithm were introduced in [8] by introducing a training phase where positive
samples were generalized to the neighbouring regions. In [7] class confidence is
estimated in the training phase for each sample, while [6,9] directly adjusts the
class probability estimated from the local neighborhood.

Comparative studies on the performance of cost-sensitive learning and over-
sampling [27,28] show no general advantage on either side, however, the com-
bination of the two is able to outperform both of them [29]. In a recent study
comparing the performance of specificity-oriented (nearest neighbor techniques,
Support Vector Machines) and generality-oriented (C4.5, Naive Bayes, Multi-
Layer Perceptron and Radial Basis Function based neural networks) algorithms
for imbalanced learning, it was found that kNN can achieve more accurate results
for local regions where positives are underrepresented.

Despite its simplicity, kNN classification can be improved in many ways.
Some studies proposed to extract prototypes [30–32], select the size of the queries
dynamically [33,34], or utilize the distances in the classification rule [35–38].
Recently the main focus was improving the performance of kNN on imbal-
anced datasets [6–8]. The most recent result inspiring this work is the k Rare
Class Nearest Neighbors (kRNN) technique [9], which was shown to give supe-
rior results in comparison with other variants of kNN, generality-oriented tech-
niques and oversampling based approaches. kRNN gives a Laplace-smoothing
based probability estimation for the posterior probabilities [39], incorporating
the information on the number of positive and negative instances in the local
neighborhood and in the entire population to bias the probability estimates
towards the positive class.

We have found that kRNN (just like kNN) assigns the same probabilities
to various point configurations in the feature space. In regular kNN, when the
classes are supposed to be balanced and uniformly sampled, this issue is not
relevant. However, in imbalanced learning problems, when the sensitivity is to
be maximized, real advances can be achieved by ranking these configurations
based on local features and adjusting the probability estimates according to the
ranking. Our contributions to the field:

1. We propose a new probability estimator based on the kRNN technique and
taking into account the local features of the decision neighborhoods.

2. Proved performance improvement over kRNN.
3. As a conclusion, (2) supports the validity of (1).

268 Z. László et al.

3 A Brief Introduction to the k Rare Class Nearest
Neighbor (kRNN) Algorithm

3.1 Notations

In the rest of the paper the following notations are used: scalar values and vectors
are denoted by normal and boldface typesetting, respectively, like p, n ∈ Z and
t ∈ R

D. Sets are denoted by calligraphic typesetting, like N ⊂ Z. All over the
paper we suppose that there is a training set of D dimensional vectors xi ∈ R

D,
i = 1, . . . , N , with corresponding labels yi ∈ {+,−}, i = 1, . . . , N , where +
refers to the positive (rare) class. Furthermore, all over the paper the number of
positive and negative training vectors is denoted by N+ and N−, respectively.

Given a query instance t in a k(R)NN classification scenario, the set of closest
vectors in the training set is called the decision neighborhood. A decision neigh-
borhood consist of k vectors in classical kNN and k′ ≥ k vectors in kRNN. We
use the term point configuration referring to a particular set of vectors, mainly
a given query vector and the instances in its decision neighborhood. Note that
many query points may lead to the same decision neighborhood, but the point
configurations within these neighborhoods are the same only if the query points
are the same. By spatial features of point configurations we refer to any quanti-
tative figures that can be extracted from a set of vectors. Mostly, we will work
with spatial features of point configurations.

3.2 The k Rare Class Nearest Neighbor Algorithm

Before elaborating the details of the proposed probability estimator, we give a
brief introduction to the operation of the kRNN algorithm.

When one of the classes is highly under-sampled, the main issue with the
classical kNN algorithm is that it is likely to find only negative samples in the
neighborhood of the hypothetical separating hyperplane. In these cases the prob-
ability of a test point coming from the negative class becomes strictly 1. This
property of the classical kNN classification schema highly reduces the sensitivity
of the algorithm, as no threshold on probabilities will make these samples turn
into positive, even if they are extremely close to the hypothetical separating
hyperplane. Based on three principles, the kRNN classifier tries to resolve the
issues of imbalanced datasets by design:

1. Using a dynamic query size by increasing the decision neighborhood of a test
point until the following two conditions hold:
(a) the neighborhood contains at least k positive samples;
(b) the neighborhood reaches a positive-negative border.
In this way, the decision neighborhood always contains at least 1 positive
sample, thus the estimated probability of the negative class will never be
exactly 1.

2. Supposing that the distribution of positive labels in some neighborhood fol-
lows a binomial distribution, one can construct confidence intervals on the

Improving the Performance of the k Rare Class Nearest Neighbor Classifier 269

estimated proportion of the labels. Particularly, the probability (proportion)

of positive samples can be estimated as q̂ =
N+

N
, with the confidence interval

on the real value q∗ as

q∗ ∈ [Llower
glob (q̂, N, α), Lupper

glob (q̂, N, α)], (1)

Llower
glob (q̂, N, α) = q̂ − zα/2

√
q̂(1 − q̂)/N, (2)

Lupper
glob (q̂, N, α) = q̂ + zα/2

√
q̂(1 − q̂)/N. (3)

where zα/2 denotes the z-score of the normal distribution corresponding to
the confidence level (1 − α), and α is the significance level specified by the
user. For small sample size, the confidence interval needs to be corrected for
underestimation [9]: let n, p and r = n + p denote the number of negative
and positive samples and the size of a decision neighborhood. Then, q̂ =

p

r
and for the real value q∗ one gets

q∗ ∈ [Llower
small(q̂, r, α), Lupper

small(q̂, r, α)], (4)

Llower
small(q̂, r, α) =

q̂ + z2α/2/(2r) − zα/2

√
q̂(1 − q̂)/r + z2α/2/(4r2)

1 + z2α/2/r
, (5)

Lupper
small(q̂, r, α) =

q̂ + z2α/2/(2r) + zα/2

√
q̂(1 − q̂)/r + z2α/2/(4r2)

1 + z2α/2/r
. (6)

Again, α is the user specified significance level of the confidence interval.
3. Given a local neighborhood, the estimated probability of the positive class is

determined by Laplacian smoothing:

P(+|t) =
p + 1

N

p + γn + 2
N

, (7)

where t is the test vector, and p, n denote the number of positive and negative
samples in the decision neighborhood around t. Note that due to the second
constraint of the dynamic query p > k is possible. The factor γ depends on
the confidence of the local proportion estimate compared to the global one.
Particularly,

γ =

⎧
⎨

⎩

1 , if Llower
small(p/r, r, αs) ≤ Lupper

global(N+/N,N, αg),
nN+

pN−
, otherwise,

(8)

where αs and αg denote the significance levels of the local (small) and global
proportion estimations. In practice, both significance levels are set to 0.1. The
γ factor is responsible to bias the probability estimation towards the positive
class if the local proportion of positive samples seems to be significantly higher
than the global proportion of positive vectors.

270 Z. László et al.

The kRNN technique was shown to give superior performance compared to vari-
ous competing classification techniques. For a more detailed description of kRNN
see [9].

(a) (b) (c)

Fig. 1. Illustration of the operation of kRNN (black dots, red crosses and green tri-
angle denote the samples of the negative and positive classes, and the test vector,
respectively): (a) decision neighborhood with classical kNN at k = 1; (b) decision
neighborhood with classical kNN at k = 2; (c) decision neighborhood with kRNN at
k = 1 or classical kNN at k = 3. (Color figure online)

3.3 Demonstrating the Operation of kRNN

For a visual illustration of the operation of the method, see Fig. 1. In the sub-
figures, one can see a classification problem where the positive class is highly
undersampled compared to the negative class. With a classical kNN at k = 1,
the decision neighborhood is depicted in Fig. 1(a) by blue circle, and one can
observe P(+|t) = 0, as no positive sample resides inside the decision neighbor-
hood. Similarly, with k = 2, the decision neighborhood contains only two nega-
tive samples (Fig. 1(b)), leading to P(+|t) = 0. Figure 1(c) illustrates the decision
neighborhood with the classical kNN technique at k = 3, and the decision neigh-
borhood with kRNN at k = 1. With classical kNN the posterior probability
becomes P(+|t) = 1/3. Distance weighted kNN variants [36,37] assign a weight
to each neighbor which is inversely proportional to its distance from the test
point. These variants will give P(+|t) < 1/3, as the negative vectors are closer
to the test vector than the positive instance. With kNN the estimated positive
probability becomes P(+|t) = 1/3, while kRNN gives P(+|t) � 1/3, where � is
due to the implicit probability smoothing. However, while the static query size
of kNN cannot ensure that there is at least one positive sample in the decision
neighborhood, the dynamic query of the kRNN technique guarantees this.

4 The Proposed Method

In this section the details of the proposed improvements are elaborated.

Improving the Performance of the k Rare Class Nearest Neighbor Classifier 271

(a) (b) (c) (d)

Fig. 2. Configurations to which the same posterior probability is assigned by kRNN.
Green triangle, black dots and red crosses represent the test vectors, the negative
samples and the positive samples, respectively. (Color figure online)

4.1 Ranking of Point Configurations

The kRNN technique was reported to give superior results compared to other
techniques on real datasets, especially in terms of the AUC score. Noting that
the AUC measure is invariant to monotonic transformations of the estimated
probabilities, we can conclude that the ranking of posterior probability esti-
mates is more accurate than that of other techniques. From Eq. (7), one can
readily see that the positive posterior probability estimate of kRNN depends
only on the number of positive and negative samples in the decision neighbor-
hood: P(+|t) = P(+|p(t), n(t)). Thus, kRNN assigns the same probability to the
various point configurations in Fig. 2, even though the common sense suggests
that the test vector in Fig. 2(a) should have somewhat higher positive posterior
probability, than the test points in the configurations in Fig. 2(b), (c) and (d).
Our expectation is that the performance of kRNN could be increased by break-
ing up the equal probability levels of point configurations with the same number
of positive and negative instances in the decision neighborhoods. Put in another
way, the high performance of kRNN suggests that the ordering of kRNN based
probability estimates is generally good, thus, these probability estimates should
be used as baselines for an adjusted probability estimate taking into considera-
tion spatial features of the point patterns in the decision neighborhoods.

For a visual illustration, in Fig. 3(a) we have plotted the probability levels
corresponding to some p and n combinations on a hypothetical dataset consist-
ing of 40 positive and 200 negative vectors. The goal is to break up the equal
probabilities of decision neighborhoods with the same p and n cardinality based
on some local features of the point configurations, leading to bands of proba-
bility estimates like the illustration in Fig. 3(b). Consequently, we look for the
adjusted positive probability estimate in the form

P
′(+|t) = max{min{P(+|t) + (R(t,N+,N−) − 1/2) w, 1}, 0}, (9)

where w ∈ R
+ is the non-zero width of the bands and R : RD ×Z

p ×Z
n → [0, 1]

is a so-called ranking function operating on the test vector and the sets of closest
positive (N+) and negative (N−) neighbors in the decision neighborhood. R is
expected to assign an absolute value to the point configuration in the decision

272 Z. László et al.

(a)

(b)

Fig. 3. Illustration of breaking up equal probabilities. The lines in Fig. (a) represent
the probability levels assigned to decision neighborhood consisting of n negative (hor-
izontal axis) and p positive samples. Using the local, spatial features extracted, these
probability levels broke up into probability bands. Probability levels in the same band
are related to decision neighborhoods consisting of the same number of positive and
negative samples, the differences within a band are adjustments related to the spatial
features of the point configurations, used to distinguish and rank situations like the
ones depicted in Fig. 2.

neighborhood reflecting our preconception on the probability of the positive
class for t. In other words, given two neighborhoods with the same number of
positive and negative samples, R(t,N+,N−) < R(t′,N ′

+,N ′
−), |N+| = |N ′

+|,
|N−| = |N ′

−| should reflect that P(+|t) < P(+|t′). The min and max operators
are used to prevent exceeding the range [0, 1]. In practice, w is a free parameter
controlling the width of the probability bands. The larger w is, the more likely it
becomes that the bands corresponding to decision neighborhoods with different
number of positive and negative instances will overlap and the ordering of pure
kRNN positive probability estimates will be mixed up. If

w < min
n,n′∈{0,N−}
p,p′∈{0,N+}

|P(+|n, p) − P(+|n′, p′)|, (10)

then no overlap is possible, P(+|p, n) < P(+|p′, n′) implies P
′(+|t) < P

′(+|t′),
where p, n and p′, n′ denote the number positive and negative samples in the

Improving the Performance of the k Rare Class Nearest Neighbor Classifier 273

decision neighborhoods of t and t′, respectively. Generally, R may be considered
as a probability estimator, as well. The reason why we refer to it as a rank-
ing function is that we do not expect R being backed by any reasoning from
probability theory. Depending on the properties of the feature space and the
dissimilarity measure, R may incorporate the distances and angles of the points,
their distributions, R may try to carry out linear separation, and any combina-
tion of these, even applying different techniques in different situations. Thus, the
outcomes of the ranking functions are not expected to be comparable for differ-
ent decision neighborhoods, yet they are expected to break up the probability
ties around the baseline kRNN estimations.

In practice, many ranking functions can be developed depending on the
expectations on the data, the feature space, or the properties of the dissimi-
larity measures being used. For the sake of generality, without any assumptions
on the space, the manifold of the classes or the dissimilarity measure being used,
we introduce three ranking functions which may be used to improve the perfor-
mance of the kRNN classifier in general:

1. It is a natural assumption that the larger the minimum distance of negative
samples from the test vector is, the less likely it is that the test vector is
negative. Accordingly, the following ranking function seems to be a good
candidate to break up probability ties:

R1(t,N+,N−) =
min
x∈N−

d(x, t)

min
x∈N−

d(x, t) + min
x∈N+

d(x, t)
. (11)

The denominator is used to norm the function into the range [0, 1].
2. Another approach is fitting a line on a positive and a negative sample in

the decision neighborhood, projecting the query point onto that line, and the
position of the projection can be used to infer on the membership of the query
point regarding the positive and negative class. Namely, let x+ and x− denote
a positive and a negative instance in the decision neighborhood, respectively.
Then,

z =
(x+ − x−)T (t − x+)
‖x+ − x−‖‖t − x+‖ (12)

denotes the signed distance of x− and the projection of the query point onto
the line fitted to x+ and x−, with z = 1 if the projection falls on x+ and
z = 0 if the projection falls on x−. Note, that z can be negative or can be
greater than 1.
We certainly assume that more negative the z is, the more likely that the
query point belongs to the negative class, the more positive z is, the more
likely that the query belongs to the positive class.
By aggregating this measure for all pairs of positive and negative pairs, we
would have an empirical distribution on the z.
Unfortunately, this estimation does not take into account the natural assump-
tion, that the confidence of a decision based on z should decrease as the dis-
tance d of t and the line fitted on x+ and x− increases. Then, replacing z

274 Z. László et al.

by the Gaussian distribution Gt,x+,x−(z,
√

d/‖x+ − x−‖), where the standard
deviation increases with the square root of d in units ‖x+−x−‖ to make these
values comparable for various settings.
By aggregation of these individual probability density functions (pdf), we
would get a more realistic estimation on the pdf of z,

pz(z) =
∑

x+∈N+
x−∈N−

Gt,x+,x−

The cumulative density function at 1/2 (parameter) of this sum can result in
a ranking function as

R2(t,N+,N−) =
∫ 1/2

−∞
pz(z)dz.

3. Finally, we can construct a ranking function using the density of negative
samples in the query neighborhood. Supposing that the sample points are the
realization of a sampling Poisson point process, the intensity of the process
(inversely proportional to the density of points) is a function of the first
neighbor distances [40]. Thus, the mean of the first neighbor distances of
the negative samples characterizes the density of the negative samples. If
the query point belongs to the negative class, we can expect that its mean
distance to the negative samples should be similar. Taking the ratio of the
two leads to a measure which gives 0 if the negative samples are the same and
the query point differs or the query point is infinitely far from the negative
samples, and gives 1 if the query point is at the same distance, or closer to
the negative samples than they are to their closest neighbor.

R3(t,N+,N−) = min

⎧
⎪⎨

⎪⎩
1,

∑

x∈N−
d1(x,N−)

∑

x∈N−
d(t,x)

⎫
⎪⎬

⎪⎭
, (13)

where d1 denotes the first neighbor distance of x regarding the set N−. Note
that this ranking function does not use the positive samples at all.

We have constructed three ranking functions based on simple but meaningful
principles, which can be expected to improve the probability estimations of point
configurations in decision neighborhoods which have the same number of positive
and negative samples. We also emphasize that all the ranking functions are based
on information available in the query neighborhoods, but not utilized by the
majority based kRNN decision rule.

4.2 Summary of the Proposed Method

The proposed, improved kRNN method is given in Algorithm 1. The technique
can be summarized as a two-phase kNN algorithm. In the first phase, a raw

Improving the Performance of the k Rare Class Nearest Neighbor Classifier 275

Algorithm 1. Classification by the improved kRNN method
Input: The training set xi ∈ R

D, i = 1, . . . , N , with corresponding labels yi ∈ {+,−},
i = 1, . . . , N ; a test vector t ∈ R

D; the width w of bands.
Output: P

′(+|t): the positive posterior probability of t.
P(+|t) ← the positive posterior probability determined by the kRNN algorithm.
N ← the indices of training vectors in the decision neighborhood determined by the
kRNN query.
P

′(+|t) ← max{min{P(+|t) + (R(t,N) − 0.5)w, 1}, 0} where R is an arbitrarily
choosen ranking function.

probability estimation is carried out using the kRNN algorithm. In the second
phase, these probability estimates are refined according to the local spatial fea-
tures of the point patterns. At w = 1, Eq. (9) is highly similar to an ensemble-like
average of the kRNN and ranking function based probability estimations. The
main difference of the proposed method and averaging based ensembles is that
we use kRNN as a baseline estimation, and the effect of the ranking function is
always centered around a certain kRNN based probability level. According to
our best knowledge, no technique like this has been proposed before.

5 Experiments and Results

We have carried out various tests to measure the performance of the proposed
technique for imbalanced classification problems. In this section, the details of
the experimental settings are presented and the results are discussed.

5.1 Experimental Settings

For the ease of comparison, we have used the same real-world datasets as used
in [6,8,9] for testing, a summary of their characteristics is given in Table 1. The
Glass, Hypothyroid, SPECT F, Hepatitis and Vehicle datasets are downloaded
from the UCI Machine Learning repository [41]; the PC1, CM1 and KC1 datasets
describe problems for predicting software defects, each obtained from the NASA
IV&V Facility Metrics Data Program (MDP) repository1. In multiclass prob-
lems one particular class was selected and classified against the others. Besides
the datasets being highly imbalanced regarding the number of samples, the dis-
tribution of sample points related to the two classes is also uneven in most of
the datasets. To demonstrate this, the data has been normalized by statistical
standardization, and we have computed the nearest neighbor distances of sample
points within the positive and negative classes. The nearest neighbor distance
distribution is directly related to the hypothetical sampling rate of training vec-
tors [40]. Differing distance distributions suggest differing, uneven sampling of
the positive and negative classes. The mean of the closest neighbor distances and
the p-value of Welch’s t-test on the equality of means are summarized in Table 2.
1 http://promise.site.uottawa.ca/SERepository/datasets-page.html.

http://promise.site.uottawa.ca/SERepository/datasets-page.html

276 Z. László et al.

Table 1. Summary of the datasets used for testing

Dataset Size Num. of attributes Classes (Pos., Neg.) Pos:Neg

Glass 214 9 (3, others) 17:197 (7.94%)

Hypothyroid 3163 25 (true, false) 151:3012 (4.77%)

PC1 1109 21 (true, false) 77:1032 (6.94%)

CM1 498 21 (true, false) 49:449 (9.84%)

KC1 2109 21 (true, false) 326:1783 (15.46%)

SPECT F 267 44 (0, 1) 55:212 (20.60%)

Hepatitis 155 19 (1, 2) 32:123 (20.65%)

Vehicle 846 18 (‘van’, others) 199:647 (23.52%)

Table 2. Mean distances within classes

Dataset Mean pos. dist Mean neg. dist p-value

Glass 0.96 0.61 0.8684

Hypothyroid 1.06 1.98 0.0000

PC1 1.53 4.73 0.0017

CM1 1.54 2.90 0.0008

KC1 1.07 1.82 0.0000

SPECT F 2.19 0.62 0.0000

Hepatitis 2.71 1.94 0.0001

Vehicle 0.35 0.50 0.6534

One can observe, that except 3 datasets, we can reject the null-hypothesis that
the means are equal. Thus, besides the imbalance in the number of samples, the
sampling rate of classes also seems to be different in most of the cases. Naturally,
the nearest neighbor distance statistics depend on the distance used and the way
the data is normalized. Accordingly, the conclusions we have drawn on the dif-
fering sampling rates are valid for the Euclidean distance with the statistical
standardization of the data.

There are various metrics used to measure the performance of classifiers
in binary classification problems. However, many of them are affected by the
imbalanced nature of the training and test sets. We do report measures which
are more-or-less independent from the number of samples in the two classes.
The first measure is the already mentioned Area Under Curve (AUC), where the
curve refers to the Receiver Operating Characteristic (ROC) curve [42]. AUC is
an aggregated measure of how sensitive the classifier is for the positive samples
at various levels of false positive rates. The two further relevant measures we
used are F1-score and balanced accuracy (BACC):

Improving the Performance of the k Rare Class Nearest Neighbor Classifier 277

F1 =
2TP

2TP + FP + FN
, BACC =

1
2

(
TP

TP + FP
+

TN

TN + FN

)
, (14)

both of them providing a composite measure for the average performance of clas-
sifiers on the positive and negative classes, with TP , TN , FP and FN denoting
the number of true positive, true negative, false positive and false negative detec-
tions, respectively.

Zhang et al. [9] give a detailed comparison of kRNN to various classification
techniques, including kNN variants, minority oversampling based approaches,
generality based methods and cost-based techniques. As the primary goal of the
proposed technique is to improve the kRNN itself, due to space limitations we
compare the method to kRNN only. We emphasize that we used the datasets
and followed the testing methodology described in [9]. In each test, shuffle cross
validation is used, by shuffling the dataset 20 times, and each time using 90% for
training and 10% for testing. This validation technique generates a larger number
and more different test cases than k-fold or leave-one-out cross validation.

5.2 Results at Particular Bandwidths

Although w is a free parameter of the proposed technique and optimization
over w could improve its performance on any given dataset, we expect that any
reasonable choice should improve the performance, in general. Before examining
the aggregated performance of the proposed technique as a function of w, we
analyze its performance at some particular choices to demonstrate that gains are
achieved on most of the datasets. The results at w = 0.0001, w = 0.1 and k = 1
(following the methodology of [9]) are compared to that of the original kRNN
technique in terms of AUC in Table 3. One can observe, that in most of the
cases the highest scores are related to the R1 ranking function with bandwidth

Table 3. AUC scores at two particular w bandwidths, the highest scores highlighted by
boldface typesetting. The first column contains the results of the pure kRNN technique.

Ranking - R1 R2 R3 R1 R2 R3

Bandwidth (w) - 0.0001 0.0001 0.0001 0.1 0.1 0.1

Hypothyroid 0.9485 0.9485 0.9485 0.9485 0.9471 0.9442 0.9475

Glass 0.7336 0.7345 0.7338 0.7340 0.7539 0.7340 0.7566

PC1 0.7805 0.7807 0.7806 0.7806 0.7906 0.7736 0.7836

CM1 0.7040 0.7044 0.7042 0.7041 0.7223 0.7099 0.7020

KC1 0.7321 0.7322 0.7321 0.7321 0.7434 0.7367 0.7324

SPECT F 0.7013 0.7015 0.7014 0.7009 0.7020 0.6927 0.6983

Hepatitis 0.7883 0.7884 0.7881 0.7886 0.8133 0.7858 0.8207

Vehicle 0.9400 0.9400 0.9400 0.9400 0.9397 0.9396 0.9408

Mean 0.7910 0.7913 0.7911 0.7911 0.8015 0.7895 0.7977

278 Z. László et al.

w = 0.1, the average gain in performance is more than 1%. One can also confirm
that the improvements are present for most of the datasets.

At w = 0.0001, the method breaks up the ties in the probability estimations of
the kRNN technique, but due to the relatively small value of w, the overlapping of
probability bands related to different numbers of positive and negative neighbors
is limited. In this case the performance gains are also small. The reason for this
is that all datasets are relatively small, thus, the number of situations where the
proposed technique may have a positive effect is limited. For example, if all the
decision neighborhoods containing n = 21 negative and p = 1 positive instances
are truly negative regions, breaking up the ties does not improve the sensitivity or
the AUC score of the method. When the true label of neighborhoods containing,
say, n = 2 and p = 1 negative and positive instances varies, breaking up the ties
could improve the performance, but the number of situations like these might
still be limited.

At larger bandwidths the probability bands tend to overlap. In these cases the
ranking of probabilities related to neighborhoods of different number of positive
and negative instances are affected, as well. As the results show, this may have
a positive effect on the performance (up to some certain bandwidth), since the
ranking function may be a good proxy on the real ranking of probabilities related
to the same kRNN estimations.

5.3 The Aggregated Performance Measures as Functions of w

The mean performance measures as functions of w are summarized in Table 4.
Besides the already defined ranking functions we have introduced Rm as the
mean of the R1, R2 and R3, incorporating the features of each previously defined
functions.

Regarding the AUC scores, one can observe that the R1 function provides
the best results, with the highest score of 0.8224 at the bandwidth of 1.0, giving
a more than 3% improvement compared to the simple kRNN technique.. For
higher bandwidths, like 1.3, the performance slightly drops. The bandwidth of
1.0 may seem extremely large affecting the kRNN based probability estimates
heavily. This can be explained by the nature of the ranking functions: although
they are normalized to the range [0, 1], the marginal results are rare, in the
common situations they take values near 0.5. Thus, although the bandwidth 1.0
suggests extremely wide bands, in practice the effective bandwidth are much
smaller. One can also observe that in most of the cases the R1 ranking function
outperforms R2 and R3, which shows that the spatial feature used in R1 is more
effective than those used in R2 and R3. However, the mean ranking function
Rm provides better results than any of its constituents at the bandwidths 0.4
and 0.7. This shows that although R2 and R3 give worse results than R1, in
general, the combination of all ranking functions by taking their mean is able to
capture the features of the dataset better than any single one. The reason why R1

outperformed Rm at the bandwidth 1.0 is that R2 and R3 reach their maxima at
0.7 and 0.1, respectively; consequently, taking the mean of the ranking functions
at 1.0 we can expect that R2 and R3 will contribute slightly worse results than

Improving the Performance of the k Rare Class Nearest Neighbor Classifier 279

Table 4. Aggregated performance measures as functions of w, highest scores in each
block are highlighted by boldface typesetting

Method Measure\w 0.0001 0.05 0.1 0.4 0.7 1.0 1.3

kRNN AUC 0.7910 0.7910 0.7910 0.7910 0.7910 0.7910 0.7910

kRNN + R1 0.7913 0.7985 0.8015 0.8093 0.8118 0.8224 0.8179

kRNN + R2 0.7911 0.7898 0.7896 0.7884 0.7962 0.7961 0.7855

kRNN + R3 0.7911 0.7955 0.7977 0.7959 0.7841 0.7794 0.7692

kRNN + Rm 0.7912 0.7963 0.7999 0.8103 0.8142 0.8211 0.8166

kRNN F1 0.4961 0.4961 0.4961 0.4961 0.4961 0.4961 0.4961

kRNN + R1 0.4961 0.4937 0.4925 0.4870 0.4765 0.4533 0.4379

kRNN + R2 0.4961 0.4953 0.4951 0.4903 0.4850 0.4220 0.3583

kRNN + R3 0.4961 0.4967 0.4987 0.5031 0.5023 0.4934 0.4839

kRNN + Rm 0.4961 0.4952 0.4971 0.5009 0.5034 0.4993 0.4965

kRNN BACC 0.7577 0.7577 0.7577 0.7577 0.7577 0.7577 0.7577

kRNN + R1 0.7577 0.7580 0.7589 0.7622 0.7610 0.7473 0.7447

kRNN + R2 0.7577 0.7587 0.7597 0.7602 0.7592 0.7294 0.6877

kRNN + R3 0.7577 0.7554 0.7559 0.7497 0.7466 0.7422 0.7397

kRNN + Rm 0.7577 0.7572 0.7589 0.7640 0.7656 0.7639 0.7660

R1. This might be solved by taking weighted means of the ranking functions
where the weights reflect their optimal bandwidths.

Regarding the F1 and BACC measures, the Rm ranking function provided
the highest values at the bandwidths of 0.7 and 1.3, respectively. Note that the
F1 and BACC scores measure the absolute performance of the classifier, in other
words, they measure the effect of the ranking functions near the 0.5 probability
level. Naturally, this is a small segment of the entire probability range [0,1], thus,
smaller performance gains can be expected than in the case of the AUC score.

The highest overall score at the bandwidth 1.0 may suggest that the best
results are achieved by taking the average of the probability estimation provided
by kRNN and the ranking functions. This is not the case. However, this is acci-
dental: on the one hand, the corrections added by the ranking functions to the
probability estimates are centered at the kRNN based probability estimates, on
the other hand, ranking functions like R3 cannot be interpreted as probability
estimates, thus, incorporating it into an ensemble of estimators is meaningless.

5.4 Performance as a Function of k

As the summarized results in Table 5 clearly show, the proposed technique out-
performs the kRNN technique at each k being examined, in terms of all perfor-
mance measures. Interestingly, in most of the cases R1 ranking function provides
the highest scores. The decreasing trends in the scores of R2 and R3 are related to

280 Z. László et al.

Table 5. Performance measures as functions of k; highest values in each block, for
each k are indicated by boldface typesetting

Method Measure k = 1 k = 3 k = 5 k = 7

kRNN AUC 0.7910 0.8263 0.8225 0.8101

kRNN + R1 0.8057 0.8403 0.8409 0.8331

kRNN + R2 0.7869 0.8125 0.7993 0.7788

kRNN + R3 0.7991 0.8304 0.8235 0.8125

kRNN + Rm 0.8041 0.8370 0.8347 0.8241

kRNN F1 0.4961 0.4994 0.4735 0.4426

kRNN + R1 0.4935 0.5138 0.4893 0.4542

kRNN + R2 0.4941 0.4975 0.4742 0.4410

kRNN + R3 0.5051 0.4988 0.4629 0.4367

kRNN + Rm 0.4972 0.5082 0.4763 0.4472

kRNN BACC 0.7577 0.7269 0.7096 0.6898

kRNN + R1 0.7613 0.7453 0.7232 0.7015

kRNN + R2 0.7601 0.7272 0.7102 0.6893

kRNN + R3 0.7571 0.7220 0.6999 0.6830

kRNN + Rm 0.7595 0.7346 0.7124 0.6939

the fact that unlike R1, these ranking functions change as the decision neighbor-
hoods increase, and this change seems to deteriorate the rankings. Localization
of these techniques (like applying them to the closest N samples in the decision
neighborhood) might improve their performance for larger k values. Again, the
most important score is AUC, which shows an average of 2% increase for kRNN
+ R1 compared to pure kRNN. One can also observe that the F1 and BACC
scores also show improvements, especially with the R1 ranking function. The
reason why we didn’t increase k over 7 is that some databases contain low num-
ber of positive samples, like Glass having 17 positive instances only: approaching
the number of positive samples by k leads to meaningless situations.

6 Discussion and Summary

We have proposed improvements to the kRNN classifier incorporating features
of the point patterns in the decision neighborhoods. The proposed technique
is formulated in terms of ranking functions which express preconceptions on
the classification of point patterns of the same number of positive and negative
samples. We also proposed three ranking functions, two of them using only the
distances of the unseen vector and the instances in the decision neighborhood.
As the ranking functions are expressed in terms of the distance, the proposed
technique can be applied in any problem where kRNN, and can be kernelized, as
well. The effect of the proposed improvement is controlled by a free parameter:

Improving the Performance of the k Rare Class Nearest Neighbor Classifier 281

the bandwidth. Although the bandwidth can be trained by grid search, the test
results show, that most of the choices in the reasonable range of [0, 1] tend to
improve the performance regardless of the ranking function or the data. The
proposed technique is agnostic in the sense that no assumption on the data is
made. The improvement is based on the fact that the robust majority based
kRNN estimator is likely to assign the same probability to highly different point
patterns. The test results on various datasets clearly show that reasonable choices
of the bandwidth parameter can significantly increase the performance in terms
of AUC. Further steps include:

– discovering further ranking functions of general use;
– analytically finding the optimal bandwidth parameter for certain ranking

functions;
– carry out further tests on datasets with various types of imbalancedness;

An open-source Python implementation of the classifier with a conventional
sklearn interface is available at

https://github.com/gykovacs/krnn with spatial features.

References

1. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data
Eng. 21(9), 1263–1284 (2009)

2. He, H., Ma, Y.: Imbalanced Learning: Foundations, Algorithms, and Applications.
Wiley, Hoboken (2013)

3. Chawla, N.V.: Data mining for imbalanced datasets: an overview. In: Maimon,
O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook. Springer,
Boston (2010). https://doi.org/10.1007/978-0-387-09823-4 45

4. Gagliardi, F.: Instance-based classifiers applied to medical databases: diagnosis and
knowledge extraction. Artif. Intell. Med. 52(3), 123–139 (2011)

5. Hu, L.-Y., Huang, M.-W., Ke, S.-W., Tsai, C.-F.: The distance function effect
on k-nearest neighbor classification for medical datasets. SpringerPlus 5(1), 1304
(2016)

6. Zhang, X., Li, Y.: A positive-biased nearest neighbour algorithm for imbalanced
classification. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD
2013. LNCS (LNAI), vol. 7819, pp. 293–304. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37456-2 25

7. Liu, W., Chawla, S.: Class confidence weighted knn algorithms for imbalanced data
sets. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011. LNCS (LNAI),
vol. 6635, pp. 345–356. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20847-8 29

8. Li, Y., Zhang, X.: Improving k nearest neighbor with exemplar generalization for
imbalanced classification. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD
2011. LNCS (LNAI), vol. 6635, pp. 321–332. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20847-8 27

9. Zhang, X.J., Tari, Z., Cheriet, M.: KRNN: k rare-class nearest neighbor classifica-
tion. Pattern Recogn. 62(2), 33–44 (2017)

https://github.com/gykovacs/krnn_with_spatial_features
https://doi.org/10.1007/978-0-387-09823-4_45
https://doi.org/10.1007/978-3-642-37456-2_25
https://doi.org/10.1007/978-3-642-37456-2_25
https://doi.org/10.1007/978-3-642-20847-8_29
https://doi.org/10.1007/978-3-642-20847-8_29
https://doi.org/10.1007/978-3-642-20847-8_27
https://doi.org/10.1007/978-3-642-20847-8_27

282 Z. László et al.

10. Lemaitre, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to
tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res.
18(1), 1–5 (2017)

11. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling app-
roach for imbalanced learning. In: Proceedings of IJCNN, pp. 1322–1328 (2008)

12. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

13. Alhammady, H., Ramamohanaran, K.: Using emerging patterns and decision trees
in rare-class classification. In: Proceedings of Fourth IEEE International Confer-
ence on Data Mining (ICDM04), pp. 315–318. IEEE, New York (2004)

14. Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class-imbalance
learning. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(2), 539–550 (2009)

15. Lomax, S., Vadera, S.: A survey of cost-sensitive decision tree induction algorithms.
ACM Comput. Surv. 45(2), 16:1–16:35 (2013)

16. Qi, Z., Tian, Y., Shi, Y., Yu, X.: Cost-sensitive support vector machine for semi-
supervised learning. Procedia Comput. Sci. 18, 1684–1689 (2013)

17. Domingos, P.: Metacost: a general method for making classifiers cost-sensitive. In:
Proceedings of the fifth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 155–164 (1999)

18. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. In: SIGKDD Explorations, vol. 11, no.
1 (2009)

19. Masnadi-Shirazi, H., Vasconcelos, N.: Cost-sensitive boosting. IEEE Trans. Pattern
Anal. Mach. Intell. 33(2), 294–309 (2011)

20. Zadrozny, B., Langford, J., Abe, N.: Cost-sensitive learning by cost-proportionate
example weighting. In: Proceedings of Third IEEE International Conference on
Data Mining ICDM2003, pp. 435–442. IEEE (2003)

21. Holte, R.C., Acker, L., Porter, B.W.: Concept learning and the problem of small
disjunts. In: Proceedings of IJCAI, pp. 813–818 (1989)

22. Liu, W., Chawla, S., Cieslak, D., Chawla, N.: A robust decision tree algorithm for
imbalanced data sets. In: Proceedings of the 2010 SIAM International Conference
on Data Mining, p. 12 (2010)

23. Cieslak, D.A., Chawla, N.V.: Learning decision trees for unbalanced data. In:
Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI),
vol. 5211, pp. 241–256. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-87479-9 34

24. Carvalho, D.R., Freitas, A.A.: A genetic-algorithm for discovering small-disjunct
rules in data mining. Appl. Soft Comput. 2(2), 75–88 (2002)

25. Carvalho, D., Freitas, A.: A hybrid decision tree/genetic algorithm method for data
mining. Inf. Sci. 163(1–3), 13–35 (2004)

26. Hong, X., Chen, S., Harris, C.J.: A kernel-based two-class classifier for imbalanced
data sets. IEEE Trans. Neural Netw. 18(1), 28–41 (2007)

27. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of IJCAI
2001, pp. 973–978 (2001)

28. Weiss, G.M., McCarthy, K., Zahar, B.: Cost-sensitive learning vs. sampling: Which
is best for handling unbalanced classes with unqeual error costs. In: Proceedings
of ICDM, pp. 35–41 (2007)

29. Akbani, R., Kwek, S., Japkowicz, N.: Applying support vector machines to imbal-
anced datasets. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
ECML 2004. LNCS (LNAI), vol. 3201, pp. 39–50. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30115-8 7

https://doi.org/10.1007/978-3-540-87479-9_34
https://doi.org/10.1007/978-3-540-87479-9_34
https://doi.org/10.1007/978-3-540-30115-8_7

Improving the Performance of the k Rare Class Nearest Neighbor Classifier 283

30. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning
algorithms. Mach. Learn. 38(3), 257–286 (2000)

31. Pekalska, E., Duin, R.P.W., Paclik, P.: Prototype selection for dissimilarity-based
classifiers. Pattern Recogn. 39(2), 189–208 (2006)

32. Huang, Y., Chiang, C., Shieh, J., Grimson, E.: Prototype optimization for nearest
neighbor classification. Pattern Recogn. 35(6), 1237–1245 (2002)

33. Wu, Y., Ianakiev, K., Govindaraju, V.: Improved k-nearest neighbor classification.
Pattern Recogn. 35(10), 2311–2318 (2002)

34. Wang, J., Neskovic, P., Cooper, L.: Neighborhood size selection in the k-nearest
neighbour rule using statistical confidence. Pattern Recogn. 39, 417–423 (2006)

35. Zhou, C.Y., Chen, Y.Q.: Improving nearest neighbor classification with cam
weighted distance. Pattern Recogn. 39(4), 635–645 (2006)

36. Gou, J., Du, L., Zhang, Y., Xiong, T.: A new distance-weighted k-nearest neighbor
classifier. J. Inf. Comput. Sci. 9(6), 1429–1436 (2012)

37. Dudani, S.A.: The distance weighted k-nearest-neighbor rule. IEEE Trans. Syst.
Man Cybern. SMC–6(4), 325–327 (1976)

38. Yigit, H.: ABC-based distance weighted kNN algorithm. J. Exp. Theor. Artif.
Intell. 27(2), 189–198 (2015)

39. Manning, C.D., Raghavan, P., Schütze, M.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

40. Moltchanov, D.: Distance distributions in random networks. Ad Hoc Netw. 10(6),
1146–1166 (2012)

41. Bache, K., Lichman, M.: UCI machine learning repository. Technical report (2013)
42. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–

874 (2006)

Preference Learning and Optimization
for Partial Lexicographic Preference
Forests over Combinatorial Domains

Xudong Liu1(B) and Miroslaw Truszczynski2

1 School of Computing, University of North Florida, Jacksonville, USA
xudong.liu@unf.edu

2 Department of Computer Science, University of Kentucky, Lexington, USA
mirek@cs.uky.edu

Abstract. We study preference representation models based on partial
lexicographic preference trees (PLP-trees). We propose to represent pref-
erence relations as forests of small PLP-trees (PLP-forests), and to use
voting rules to aggregate orders represented by the individual trees into a
single order to be taken as a model of the agent’s preference relation. We
show that when learned from examples, PLP-forests have better accu-
racy than single PLP-trees. We also show that the choice of a voting rule
does not have a major effect on the aggregated order, thus rendering the
problem of selecting the “right” rule less critical. Next, for the proposed
PLP-forest preference models, we develop methods to compute optimal
and near-optimal outcomes, the tasks that appear difficult for some other
common preference models. Lastly, we compare our models with those
based on decision trees, which brings up questions for future research.

1 Introduction

Preferences are fundamental to decision making and have been researched in
areas such as knowledge representation, decision theory, social choice, and con-
straint satisfaction. Preferences amount to a total order or preorder on a set of
outcomes (alternatives). In some settings, for instance in voting theory, the num-
ber of outcomes is small enough to allow an explicit enumeration as a method
to represent preference relations. However, in other settings outcomes are spec-
ified in terms of attributes, each with its own domain, where an outcome is a
tuple of values, one for each attribute. Such outcome spaces are called combina-
torial domains. If attribute domains have at least two values, the cardinality of a
combinatorial domain is exponential in the number of attributes. Consequently,
explicit enumeration of preference orders, even for combinatorial domains over
as few as ten attributes, is infeasible.

To represent preferences over combinatorial domains, we use languages that
concisely express agent’s criteria for preferring one outcome over another, thus
determining preference orders on outcomes. Languages exploiting lexicographic
orders have been especially extensively studied. They include lexicographic
c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 284–302, 2018.
https://doi.org/10.1007/978-3-319-90050-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_16&domain=pdf

Preference Learning and Optimization for PLP Forests 285

strategies [17], lexicographic preference trees [2], partial lexicographic preference
trees [13] (our focus in this paper), and preference trees [6,14]. These models
naturally support preference reasoning [18,19]. Most recently, Bräuning et al. [3]
studied learning of preference lists, a model orthogonal to the model of PLP-
trees. On the one hand, preference lists can capture preferences that cannot
be captured by PLP-trees. On the other hand, preference lists cannot capture
conditional importances that can naturally be modeled by PLP-trees.

Lexicographic preference models have structure that factors the agent’s pref-
erence order into the importance, sometimes conditional, of attributes, and
preference orders, also sometimes conditional, on values of individual attribute
domains. This structure can be exploited for preference elicitation. It also pro-
vides useful insights into what is important for an agent when choosing among
available outcomes. In particular, it makes it easy to compare outcomes (domi-
nance testing) and to identify outcomes that are most preferred.

In this paper, we focus on lexicographic models given by partial lexicographic
preference trees, or PLP-trees for short [13]. PLP-trees that impose strong
restrictions on the structure, for instance, those with unconditional importance
of attributes and unconditional preference orders on values of attribute domains,
can be elicited effectively from the agents. However, in general, PLP-trees are
difficult to elicit directly and have to be learned, that is, built from examples
of pairwise comparisons or other observed expressions of the agent’s preference
[11]. Unrestricted PLP-trees may have size of the order of the size of the under-
lying combinatorial domain. Such large trees offer no advantages over explicit
enumerations of preference orders. However, PLP-trees learned from a set E of
examples have size O(|E|). This gives us control over the size of learned trees but
the predictive power of trees learned from small sets of examples may be lim-
ited. Learning forests of small trees and using some voting aggregation method
was proposed as a way to circumvent the problem. Following ideas proposed by
Breiman [4], Liu and Truszczynski [11] studied learning forests of PLP-trees and
used the Pairwise Majority rule (PMR) to obtain a new type of a lexicographic
preference model [11].

There are two main problems with this last approach. First, the PMR does
not (in general) yield an order. Second, it does not lead to any obvious algorithms
for reasoning tasks other than dominance testing. For instance, it does not seem
to lead to natural approaches to preference optimization, that is, computing
optimal or near-optimal outcomes. In this paper, we extend the results by Liu
and Truszczynski [11] by replacing the PMR with several common voting rules.
Using voting rules to aggregate preference orders defined by lexicographic models
has drawn significant attention lately. Lang and Xia [10] studied sequential voting
protocols. Lang et al. [9] established computational properties of voting-based
methods to aggregate LP-trees, and Liu and Truszczynski [12] conducted an
experimental study of aggregating LP-trees by voting using SAT-based tools.

Using voting rules to aggregate forests of PLP-trees turns out to yield pref-
erence models where dominance testing is as direct as with the PMR. How-
ever, preference optimization becomes feasible, too. As there are many voting

286 X. Liu and M. Truszczynski

rules that could be used, and they pose different computational challenges, it
is important to study whether some rules are better than others. Earlier work
in the standard voting setting showed significant robustness of the aggregated
order to the choice of a voting rule. Comparing several common voting rules,
researchers found that, except for Plurality, these voting methods show a high
consensus on the resulting aggregated preference orderings [5,15]. Our results on
rank correlation in the setting when individual preferences are represented by
PLP-trees over possibly large combinatorial domains also show high consensus
among orders determined by the PLP-forest models, at levels consistent with
those reported for the voting setting.

As long as we are interested in dominance testing only, one can build pre-
dictive models by learning decision trees.1 We compare the quality of learned
PLP-trees and forests with those of learned decision trees. Decision trees turn
out to be more accurate for dominance testing. However, they have drawbacks.
Decision trees do not in general represent order nor partial order relations. They
do not provide any explicit information about underlying orders and so, do
not provide insights into how agents whose preferences they aim to model make
decisions. Lastly, they do not lend themselves easily to tasks involving preference
optimization.

To summarize, our contributions are as follows. (1) We propose to model
preferences by forests of PLP-trees, aggregated by voting rules. We study com-
putational complexity of key reasoning tasks for the resulting models. (2) We
demonstrate that the models we studied had higher predictive accuracy than the
models given by a single PLP-tree, and by a PLP-forest with the PMR. (3) We
show that for several voting rules the orders obtained by aggregating PLP-forests
are quite close to each other. This alleviates the issue of selecting the “right”
rule. (4) For the proposed PLP-forest preference models, we develop methods
to compute optimal and near-optimal outcomes, the reasoning task that has no
natural solutions under models based on the PMR. (5) We compare our models
with those based on decision trees. We show that the latter are more accurate
but, as noted above, have shortcomings in other aspects.

The higher accuracy of models based on decision trees on the dominance test-
ing task does not invalidate PLP-tree based approaches, as they have important
advantages noted above. Rather, they suggest an intriguing question of whether
PLP-trees (forests) could be combined with decision trees (forests) retaining the
best features of each approach. One possibility might be to use PLP-trees to
some top-level partitioning of outcomes, with decision trees used for low-level
details.

1 One can also learn random forests of decision trees. In our experiments, decision
trees show high accuracy and seem robust to overfitting. Thus, we do not discuss
here results we obtained for random forests.

Preference Learning and Optimization for PLP Forests 287

2 Partial Lexicographic Preference Trees and Forests

Let A = {X1, . . . , Xp} be a set of attributes, each attribute Xi having a finite
domain Di. The corresponding combinatorial domain over A is the Cartesian
product CD(A) = D1 × . . . × Dp. We call elements of combinatorial domains
outcomes.

A PLP-tree over CD(A) is an ordered labeled tree, where: (1) every non-leaf
node is labeled by some attribute from A, say Xi, and by a local preference
>i, a total strict order on the corresponding domain Di; (2) every non-leaf node
labeled by an attribute Xi has |Di| outgoing edges; (3) every leaf node is denoted
by �; and (4) on every path from the root to a leaf each attribute appears at
most once as a label.

Each outcome α ∈ CD(A) determines in a PLP-tree T its outcome path,
H(α, T). It starts at the root of T and proceeds downward. When at a node d
labeled with an attribute X, the path descends to the next level based on the
value α(X) of the attribute X in the outcome α and on the local preference
order associated with d. Namely, if α(X) is the i-th most preferred value in this
order, the path descends to the i-th child of d. We denote by �T (α) the index of
the leaf in which the outcome path H(α, T) ends (the leaves are indexed from
left to right with integers 0, 1, . . .).

We say that an outcome α is at least as good as an outcome β (α �T β) if
�T (α) ≤ �T (β). The associated equivalence and strict order relations ≈T and �T

are specified by the conditions �T (α) = �T (β) and �T (α) < �T (β), respectively.
Preference relations modeled by PLP-trees are total preorders.

The leaves of a PLP-tree can be indexed in time O(s(T)), where s(T) is the
number of nodes in T , by adapting the inorder traversal to the task. After that,
the value �T (α) can be computed in time O(h(T)), where h(T) is the height of
tree T . Thus, assuming the indices were precomputed, all three relations can be
decided in time O(h(T)).

To illustrate, let us consider the domain of cars described by four multi-
valued attributes. The attribute BodyType (B) has three values: minivan (v),
sedan (s), and sport (r). The attribute Make (M) can either have value Honda
(h) or Ford (f). The Price (P) can be low (l), medium (d), or high (g). Finally,
Transmission (T) can be automatic (a) or manual (m). An agent’s preference
order on cars from this space could be expressed by a PLP-tree T in Fig. 1.

The tree tells us that BodyType is the most important attribute to the agent
and that she prefers minivans, followed by sedans and by sport cars. Her next
most important attribute is contingent upon what type of cars the agent is
considering. For minivans, her most important attribute is Make, where she
likes Honda more than Ford. Among sedans, her most important attribute is
Price, where she prefers medium-priced cars over low-priced ones, and those
over high-priced ones. She does not differentiate between sport cars; they are
least preferred.

To compare a Ford sedan with a middle-range price and an automatic trans-
mission (〈s, f, d, a〉, in our notation) and a Honda sedan with a high-range price
and a manual transmission (that is, 〈s, h, g,m〉), we traverse the tree T . We see

288 X. Liu and M. Truszczynski

Fig. 1. A PLP-tree T over the car domain

that the cars diverge on the node labeled by attribute P , and that the Ford car
falls to leaf 2 and the Honda car leaf 4. Thus, the Ford car is preferred to the
Honda car.

A PLP-forest is a finite set of PLP-trees. When extended with a voting rule
to aggregate orders given by its constituent PLP-trees, a PLP-forest specifies a
single preference order on the space of outcomes. In this way, PLP-forests with
voting rules can be viewed as models of preference relations.

3 Voting in Partial Lexicographic Preference Forests

To aggregate PLP-forests we consider the voting rules Top-k Clusters, Plurality,
Borda, Copeland, and Maximin. In our experiments, we also consider the earlier
model of PLP-forests combined with the PMR. In general, the PMR does not
yield a sensible preference relation as it suffers from the Condorcet paradox [7].
Nevertheless, it performs well in dominance testing [4,11]. We consider it here
as the baseline for the voting rules.

The five voting rules are scoring rules in the sense that, given a PLP-forest
P , they assign to each outcome o the score Sr(o, P) (where r refers to a voting
rule). The scores define the preference relation � as follows: for outcomes o, o′,
we have o � o′ if and only if Sr(o, P) ≥ Sr(o′, P). Clearly, the relation defined
in this way is a total preorder2.

The first three rules we discuss are versions of the well-known positional
scoring rules used with total preference orders. They are adjusted here to the case
of total preorders. Each tree T in a PLP-forest P determines the score Sr(o, T)
of an outcome o in the preference preorder given by T . This score depends on
the position of the preorder “cluster” containing o, its size, and on the number
of outcomes in the clusters that are more preferred than the one containing o. In
each case we consider, namely, Top-k Clusters, Plurality and Borda the specific
formula for Sr(o, T) is a natural generalization of the corresponding formula for

2 While the preference models we consider here represent total preorders, arguably the
most important class of preference relations, we note that some studies of preference
relations allow for incomparability of outcomes, which leads to preference relations
models by arbitrary preorders (not necessarily total).

Preference Learning and Optimization for PLP Forests 289

the standard case of total orders to total preorders. In each case, the sum of
scores with respect to all trees in the forest P yields the score Sr(o, P).

Below we introduce the five voting rules adjusted to the setting of total
preorders (they are commonly defined for strict total orders), as well as the
PMR.

Top-k Clusters (where k is a positive integer): For an outcome o, we define
Stkc(o, T) = max{k − �T (o), 0} and set

Stkc(o, P) =
∑

T∈P

Stkc(o, T).

Assuming that we precomputed indices of leaves in all trees, which can be accom-
plished in time O(s(P)), where s(P) denotes the number of nodes in all trees in
P , we can compute Stkc(o, P), for any outcome o, in time O(t(P) · max{h(T) :
T ∈ P}), where t(P) is the number of trees in P . We note that Top Cluster
(k = 1) is a rule similar to approval, where each tree approves all outcomes in
the leftmost cluster (and only those outcomes); and Top-k Cluster rules with
k > 1 are its natural generalizations.

Plurality: Let �T
0 be the set of most preferred outcomes in a PLP-tree T (the

set of all outcomes o with �T (o) = 0). Next, let ΔT (o) = 1 if outcome o is a
most preferred one in T , and ΔT (o) = 0, otherwise. We define the Plurality score
Spl(o, P) by setting

Spl(o, P) =
∑

T∈P

ΔT (o)
|�T
0 | .

We can compute ΔT (o) and |�T
0 | in time O(h(T)). Thus, Spl(o, P) can be com-

puted in time O(t(P) · max{h(T) : T ∈ P}).

Borda: Let T be a PLP-tree. We define �T
i to be the set of all outcomes o with

�T (o) = i (the ith cluster in the order defined by T). Let c(o) be the cluster
containing o (in our notation, c(o) = �T

�T (o)). We define

Sb(o, T) =

∑
1≤j≤|c(o)|

(n − j − ∑
0≤i<�T (o)

|�T
i |)

|c(o)| ,

where n is the size of the combinatorial domain,3 and set Sb(o, P) as follows:

Sb(o, P) =
∑

T∈P

Sb(o, T).

3 This captures the idea that the all outcomes in the top cluster in T have their score
(with respect to T) equal to the average of n − 1, n − 2, . . . , n − i (with i being the
number of outcomes in the top cluster), the outcomes in the next to top cluster have
their scores equal to the average of n − i − 1, n − i − 2, . . . , n − i − j (with j being
the number of elements in that cluster), etc.

290 X. Liu and M. Truszczynski

Assuming that the sizes |�T
i | of clusters and the quantities

∑
0≤i<�

|�T
i |) are pre-

computed, which can be done in time O(s(P)), we can compute Sb(o, T) in time
O(h(T)). Consequently, Sb(o, P) can be computed in time O(t(P) · max{h(T) :
T ∈ P}).

Copeland: Let us define NP (o, o′) to be the number of trees T ∈ P such that
o �T o′. Informally, NP (o, o′) is the number of trees that declare o more preferred
to o′. If NP (o, o′) > NP (o′, o), then o wins with o′ in P . If NP (o, o′) < NP (o′, o),
then o loses to o′ in P . The Copeland score Scp(o, P) is given by the difference
between the number of pairwise wins and the number of pairwise losses of o:

Scp(o, P) =|{o′ ∈ C \ {o} : NP (o, o′) > NP (o′, o)}|
− |{o′ ∈ C \ {o} : NP (o, o′) < NP (o′, o)}|.

Maximin: This method (also known as the Simpson-Kramer method) is consid-
ered in several variants in which the definition of the Maximin scoring function
Sxn(o, P) may include winning votes, margins, and pairwise oppositions. In this
paper, we will define it in terms of the margin for an outcome, that is, the small-
est difference between the numbers of pairwise wins and pairwise losses against
all opponents.

Sxn(o, P) = min
o′∈C\{o}

(NP (o, o′) − NP (o′, o)).

Both the Copeland score and the Maximin score can be computed in time
O(n ·t(P) ·max{h(T) : T ∈ P}), where n is the size of the combinatorial domain.

Pairwise Majority Rule (PMR): The PMR is not a scoring rule. We use it
to decide preferences between outcomes. Specifically, given two outcomes o and
o′, o �pm o′ if NP (o, o′) > NP (o′, o). Thus, deciding pairwise preferences takes
time O(t(P) · max{h(T) : T ∈ P}).

4 Computational Complexity

In the previous sections we listed estimates of the running time of algorithms that
could be used to compute scores of the five scoring rules we consider. Here we
complete the discussion by considering the complexity of the problems SCORE,
QUALITY, and OPTIMIZATION.
SCORE (for a scoring rule r): Given a PLP-forest P , an outcome o, and a
positive rational number s, decide whether Sr(o, P) ≥ s.
QUALITY (for a scoring rule r): Given a PLP-forest P and a positive rational
number �, decide whether there is an outcome o such that Sr(o, P) ≥ �.
OPTIMIZATION (for a scoring rule r): Given a PLP-forest P , compute an
outcome with the highest score (an optimal outcome).

The picture for the rules Top-k Clusters, Plurality and Borda is complete.
As we noted above, the SCORE problem for Borda is in the class P, and Lang

Preference Learning and Optimization for PLP Forests 291

et al. [9] proved that the QUALITY and OPTIMIZATION problems for Borda
are NP-complete and NP-hard, respectively. The SCORE problem for Top-k
Clusters and Plurality is in P (cf. our comments in the previous section) and
the following two results show that in each case, the problems QUALITY and
OPTIMIZATION are NP-complete and NP-hard, respectively.

Theorem 1. The QUALITY problem for Top Cluster is NP-complete.

Proof (Sketch). Membership is obvious, as one can guess an outcome o in O(p)
time, and verify that Stc(o, P) ≥ l in polynomial time in the size of P . Hardness
is proved by reduction from MIN2SAT: Given a set Φ of n 2-clauses {C1, . . . , Cn}
over a set of propositional variables {X1, . . . , Xp}, and a positive integer g (g ≤
n), decide whether there is a truth assignment that satisfies at most g clauses in
Φ.

Specifically, let Φ be a collection of n 2-clauses. For each clause in Φ, say
C = Xi∨¬Xj , we create a PLP-tree TC in Fig. 2, treating propositional variables
Xi as attributes with the domains {0i, 1i} (the form of the tree for other types
of 2-clauses is evident from the example we selected for illustration). We also set
l = n − g.

A truth assignment v falsifies a clause C in Φ if and only if, when viewed as
an outcome, it belongs to the top cluster of the corresponding tree TC . Clearly,
there is an assignment satisfying at most g clauses of Π if and only if there is an
assignment that falsifies at least l clauses in Φ. The latter is equivalent to the
existence of an outcome that belongs to the top cluster of at least l trees TC ,
C ∈ Φ, that is, an outcome v such that Stc(v, P) ≥ l. ��

Fig. 2. PLP-tree

The case of the Top-k Cluster rule with k > 1 is dealt with in the next
theorem.

Theorem 2. The QUALITY problem for Top-k Clusters, where k > 1, is NP-
complete.

Proof (Sketch). The membership in NP is evident. To prove NP-hardness for
when k > 1, we again reduce from the MIN2SAT problem, but the construction
is different. For every clause C ∈ Φ, say C = Xi ∨ ¬Xj ∈ Φ, we construct a

292 X. Liu and M. Truszczynski

set PC of three PLP-trees shown in Fig. 3 (the construction is evident from the
example we selected here for illustration).

We note that if an assignment v satisfies a clause C ∈ Φ, then we have
Stkc(v, PC) = 3 · k − 4; otherwise, we have Stkc(v, PC) = 3 · k − 3. We now
set P =

⋃
C∈Φ PC and l = 3n(k − 1) − g. We need to show that assignment v

satisfies at most g clauses in Φ if and only if v scores at least l in P according
to the Top-k Clusters rule.

Let v be an assignment satisfying g′ clauses in Φ. Then, Stkc(v, P) = g′(3 ·k−
4)+(n−g′)(3 ·k−3) = 3n(k − 1) − g′. Thus, as required, there is an assignment
v that satisfies at most g clauses if and only if there is an outcome with the score
at least l. ��

Fig. 3. Set PC of PLP-trees for clause C = Xi ∨ ¬Xj

Theorem 3. The QUALITY problem for Plurality is NP-complete.

Proof (Sketch). The membership in NP is clear. The NP-hardness can be proved
by reduction from MIN2SAT. For each clause in Φ, we create a PLP-tree TC as
in the proof of Theorem 1, and we set l = (n−g)/2p−2. One can show that there
is a truth assignment satisfying at most g clauses in Φ if and only if there exists
an outcome whose Plurality score is at least l. ��

Theorems 2 and 3 show that the corresponding OPTIMIZATION problems
for Top-k Cluster, k ≥ 1, and for Plurality are NP-hard.

The SCORE, QUALITY and OPTIMIZATION problems for Copeland and
Maximin were studied by Lang et al. [9]. These results are partial and not tight.
We studied the complexity of these problems for the scoring rules Top-k Clusters,
Plurality and Borda. Our results are complete and tight. We summarize all these
results in Table 1. Completing the complexity picture for Copeland and Maximin
remains a challenging open problem.

5 Experiments and Results

PLP-trees and forests are difficult to elicit from users directly. In practical set-
tings they have to be learned from examples, that is, pairs (o, o′) of outcomes,

Preference Learning and Optimization for PLP Forests 293

Table 1. Computational complexity results

SCORE QUALITY OPTIMIZATION

Top-k clusters P NPC (Theorems 1 and 2) NPH

Plurality P NPC (Theorem 3) NPH

Borda P NPC (cf. [9]) NPH

Copeland #PH (cf. [9]) ? ?

Maximin ? coNPH (cf. [9]) coNPH

where o is strictly preferred to o′ in the preference order we are trying to elicit
(model). A method to learn PLP-trees was proposed by Liu and Truszczynski
[11]. They also applied it learn PLP-forests and aggregate them with the PMR.
In this paper, we extend this work to the case when learned PLP-forests (forests
of learned PLP-trees) are aggregated by means of voting rules.

In our main results, we evaluate the ability of PLP-forests extended with vot-
ing rules to approximate preference orders arising in practical settings. Further,
we compare in this respect PLP-forest models with models based on decision
trees, develop for PLP-forests effective techniques to compute optimal or near
optimal outcomes, and study the effect of the choice of a specific voting rule on
the quality of the preference model.

5.1 Datasets and Experimental Set-up

We implemented the scoring rules discussed above as order aggregators for PLP-
forests and experimented with them on the twelve preferential datasets used
before by Liu and Truszczynski [11].4 Their key characteristics are given in
Table 2. The third column gives the number of pairs of outcomes from the cor-
responding domain with the first outcome being strictly better than the second
one. As mentioned earlier, we refer to such pairs as examples.

The PLP-forest learning procedure works as follows. For each of the datasets,
we randomly partition the set of examples E , generating a training set of 70% of
E and use the rest 30% as the testing set. In the training phase, we use the greedy
learning heuristic [11] to learn a PLP-forest of a given number of PLP-trees, each
of which is learned from M (a parameter) examples selected with replacement
and uniformly at random from the training set. In the testing phase, the trees
in the learned PLP-forest are aggregated using the seven voting methods, Top
Cluster, Top-2 Clusters, Top-3 Clusters, Plurality, Borda, Copeland and Max-
imin, to predict testing examples and to compute the social welfare rankings.
We repeat this procedure 20 times for each dataset.

We recall that the greedy heuristic algorithm to learn a PLP-tree [11] takes
as input the set E of examples, the set A of attributes, and a node n. The
algorithm labels n with an attribute X and picks the preference order of elements

4 The datasets are available at https://www.unf.edu/∼N01237497/preflearnlib.php.

https://www.unf.edu/~N01237497/preflearnlib.php

294 X. Liu and M. Truszczynski

Table 2. Preference datasets in the preference learning library

Dataset #Attributes #Outcomes #Examples

Breast Cancer Wisconsin (BCW) 9 270 9, 009

Car Evaluation (CE) 6 1, 728 682, 721

Credit Approval (CA) 10 520 66, 079

German Credit (GC) 10 914 172, 368

Ionosphere (IN) 10 118 3, 472

Mammographic Mass (MM) 5 62 792

Mushroom (MS) 10 184 8, 448

Nursery (NS) 8 1, 266 548, 064

SPECT Heart (SH) 10 115 3, 196

Tic Tac Toe (TTT) 9 958 207, 832

Vehicle (VH) 10 455 76, 713

Wine (WN) 10 177 10, 322

in the domain of X so that to maximize the number of examples in E correctly
decided by X and this domain order. For each value in the domain of X, the
algorithm generates a child node of n for which the algorithm recursively repeats
with updated inputs: E ′, A′ and n′, where E ′ is obtained from E excluding the
examples decided at node n, A′ = A\{X}, and n′ is a child node of n. The
algorithm stops and returns at a node where either E or A becomes empty.

The following three subsections present our experimental results. The first
one concerns the task of predicting new preferences. For this task, we compute
and report average accuracy results, where the accuracy is defined as the number
of examples in the testing set that are in agreement with the learned model
divided by the size of the testing set.

In the next subsection, we discuss computing optimal outcomes for PLP-
forests using the Top-k Clusters rules. We show that the problem can be reduced
to the weighted partial MAXSAT problem [1]. This allows one to use the
MAXSAT solver toulbar2 [8] to solve them.

Finally, we consider the effect of the choice of a scoring rule on the preference
order. To this end, we calculate the Spearman’s rho [15] for Top Cluster, Top-2
Clusters, Top-3 Clusters, Plurality, Borda and Maximin, all against Copeland.
This allows us to quantify the similarity between orders generated by different
rules.

5.2 Preference Prediction Results

We focus on PLP-forests of trees learned from small sets of examples. This
supports fast learning and leads to small constituent PLP-trees. In our exper-
iments we learned PLP-trees from samples of 50, 100 and 200 examples. The
results, averaged over all datasets for the Top-2 Clusters rule, are shown in

Preference Learning and Optimization for PLP Forests 295

Fig. 4. Preference learning and optimization results for PLP-forests

Fig. 4a. They show that the testing accuracy is better when smaller PLP-trees
are learned. We saw similar behavior for other scoring rules and so omitted the
results from Fig. 4a. Based on these experiments, we now restrict our discussion
to PLP-forests with trees learned from samples of size 50.

In Fig. 4b, we present the mean learning curves over all datasets for all 8 rules,
where each curve shows how testing results (accuracy percentages) change with
the PLP-forest size (the number of trees in the forest). We also show there the
results for learning a single PLP-tree and a single decision tree using the whole
training set (70% of E). Decision trees in our experiments are classification trees
trained using labeled instances, where an instance consists of two outcomes and

296 X. Liu and M. Truszczynski

has a binary label, 1 (0) indicating the first outcome is (is not, resp.) strictly
preferred to the second. Given a decision tree D and two outcomes o, o′, the
dominance testing query asks if it is true that o is strictly preferred to o′ in
D. In testing, to answer such a query for two outcomes, they are input into a
decision tree. If the tree predicts 1, we answer yes to the query; otherwise, no.

First, we observe that independently of the rule used the PLP-forest models
across all datasets outperform the single PLP-tree model. This is most notable
for the Borda rule, with a 4% improvement from 87% for single PLP-trees to
91% for PLP-forests. Pairwise Majority used by Liu and Truszczynski [11] turns
out to be the worst aggregating method overall.

Moreover, looking at the results for 1000-tree forests, we see that, these forests
have high accuracy of about 89–91%, on the testing datasets, depending on the
voting rule. This provides strong evidence for the adequacy of the PLP-forest
model to represent user preferences over practical combinatorial domains. This
also demonstrates that the differences between these voting rules in predicting
new preferences are not significant. In particular, the Top-3 Clusters rule finishes
90%, only a percentile point difference from Borda.

Our results also show that decision trees perform better on our datasets
with accuracy of about 99%. We attribute the near-perfect performance of the
decision-tree model to their large size (cf. Table 3) that enables classifying with
high-granularity whether one outcome is preferred to another. However, the
decision-tree model has drawbacks. It does not guarantee that the relation it
determines is an order or a partial order, it does not offer clear explanations
what factors affect comparisons, and it does not support computing optimal
and near-optimal outcomes. In each of these aspects PLP-forest models have an
advantage.

Table 3. Size comparison of PLP-trees and decision trees learned from the training
data (70% of E)

Dataset BCW CE CA GC IN MM MS NS SH TTT VH WN

Decision tree 188.8 683.0 897.2 2003.0 116.0 58 27.4 681.0 73.6 564.2 1549.0 36.2

PLP-tree 25.7 109.5 81.1 190.0 30.6 10.0 16.3 116.9 19.0 115.2 105.4 14.6

Ratio 7.6 6.2 11.1 10.5 3.8 5.8 1.7 5.8 3.9 4.9 14.7 2.5

5.3 Preference Optimization Results

PLP-forests with scoring rules allow for effective optimal outcome computation.
We show it here for orders obtained by using Top, Top-2 and Top-3 Clusters
rule to aggregate orders defined by individual PLP-trees in a PLP-forest.

For every dataset, we learn PLP-forests of up to 1000 PLP-trees. To compute
the optimal outcome in each forest (under Top, Top-2 or Top-3 Clusters rule), we
encode the problem as an instance of the weighted partial MAXSAT problem [1]

Preference Learning and Optimization for PLP Forests 297

and use toulbar2 [8] to solve it. A weighted partial MAXSAT instance Φ consists
of two parts Φh and Φs, where Φh, called hard constraints, is a collection of
clauses, and Φs, called soft constraints, is a collection of weighted clauses. If Φh

is over-constrained and thus unsatisfiable, there is no solution to Φ. Otherwise,
the solution to Φ is a truth assignment v that satisfies Φh and maximizes the sum
of the weights of the clauses satisfied by v. We now briefly discuss the encoding
for the case of binary attributes, which extends in a straightforward way to the
general case of multi-valued attributes.

The encoding consists of two main steps and assumes that we are using the
Top-k Clusters rule for aggregation. First, given a PLP-forest P = {T1, . . . , Tm},
we build a collection Ψ = {(B1

1 , k), . . . , (B1
k, 1), . . . , (Bm

1 , k), . . . , (Bm
k , 1)} of

term-weight pairs. Each term Bi
j is the conjunction of literals x or ¬x, where

x’s are the names of the attributes labeling the nodes on the path in the tree
Ti from its root to the leaf �j . If the path follows to the left child of the node
labeled by x, the term Bi

j includes the literal x, otherwise, it includes the literal
¬x. This collection of terms can be built in time that is linear in the size of
the input. One can show that the winning outcome for P with respect to the
Top-k Clusters rule is precisely the truth assignment with the maximum sum of
weights of those terms in Ψ that it satisfies (and conversely).

Second, we translate Ψ to an equivalent weighted partial MAXSAT instance
Φ of two parts Φs and Φh. Given Ψ = {(B1, w1), . . . , (BN , wN)}, we build in
linear time Φs = {(c1, w1), . . . , (cN , wN)} where every ci is a new atom, and
Φh = {CNF (Bi ↔ ci) : (Bi, wi) ∈ Ψ} where CNF denotes the set of clauses of a
given formula. One can show that the truth assignment with the maximum sum
of weights of satisfied terms in Ψ is precisely the truth assignment that satisfies
all clauses in Φh and for which the sum of weights of clauses in Φs that it satisfies
is maximum (and the converse holds, too).

Average computational time spent on searching for optimal outcomes for
all datasets is shown in Fig. 4c. We see that, for any dataset and for any for-
est size up to 1000, a weighted partial MAXSAT instance encoding preference
optimization can be solved within 0.2 s.

The reductions are straightforward for the Top-k Clusters rules. It is not
clear how to extend them to other scoring rules. Instead, we show that optimal
outcomes computed for the three of the Top-k Clusters rules are close to opti-
mal for orders obtained for other rules. Specifically, for every optimal outcome
computed based on Top-k Clusters rule (k = 1, 2, 3) and every dataset, we ran-
domly select 1000 outcomes and check how well the optimal outcome compares
to them, when other voting rules (Plurality, Borda, Copeland and Maximin) are
used. Average percentiles of the number of outcomes “beaten” by the optimal
one are shown in Fig. 4d. We note that, when forests are big, the optimal out-
comes based on the three Top-k Clusters rules are either very likely optimal
(when the percentiles are exactly 100%) or very likely near-optimal (when the
percentiles are not 100% but very close to), for all other voting rules. This is
desirable because it shows that computing optimal outcomes for orders deter-
mined by Top-k Clusters rules, which we demonstrated to be computationally

298 X. Liu and M. Truszczynski

feasible, are likely optimal or near-optimal for rules where methods to optimize
preferences are not straightforward. For decision trees, the results show that
outcomes optimal for Top-k Rules are further from optimal but still within the
top 20% of outcomes according to the decision-tree model.

5.4 Rank Correlation Results

In the standard voting setting, the rankings generated by different voting rules
are quite close to each other [5,15]. For the setting of combinatorial domain
setting, when preference orders are given as PLP-forests (with scoring rules as
aggregators), the results we discussed in the previous sections suggest that here,
too, the choice of a voting rule does not affect the order significantly (all rules
result in models of similar accuracy and outcomes highly preferred for one rule
are highly preferred for other).

Specifically, we empirically studied the correlation to orders determined by
the Copeland rule of orders determined by the other scoring rules we studied.
As suggested in previous work on measuring rank correlation [5,15,16], we used
the Spearman’s rho (denoted by ρ) as the rank correlation coefficient. Given two
total orders L1 and L2 of outcomes in C, we define

ρ(L1, L2) = 1 −
6 · ∑

1≤i≤n

(i − D2(L1(i)))2

n · (n2 − 1)
,

where i is the rank value between 1 and n, and D2(o) is the rank of outcome o
in L2. The value of ρ(L1, L2) is in between −1 and 1, both inclusive. When L1

and L2 order C exactly the same, we have ρ(L1, L2) = 1. If ρ(L1, L2) = −1, it
means L1 and L2 reversely order C. Furthermore, the closer the value to 0, the
weaker the correlation between L1 and L2.

Our results (cf. Table 4) suggest that Borda-generated orders have a very high
degree of consensus with those generated by Copeland, and that Plurality and
Top Cluster lead to orders with the lowest degrees of agreement. Nevertheless, in
all cases the Spearman’s rho has high values, similar to those obtained for strict
preference orders over non-combinatorial domains with few outcomes [5,15,16].

6 Conclusions and Future Work

We proposed to use PLP-forests extended with a voting rule as a model of
preference relations. We considered five voting rules, Top-k Clusters, Borda,
Plurality, Copeland and Maximin, all adjusted to the case of total preorders.
We studied the complexity of three key preference reasoning problems arising
in this setting: SCORE, QUALITY and OPTIMIZATION. For Top-k Clusters,
Borda and Plurality, our results, together with those obtained earlier in the
literature, provide a complete picture. In all cases, the SCORE problem is in P,
the QUALITY problem is NP-complete and the OPTIMIZATION problem is
NP-hard. For the Copeland and Maximin rules, investigated by Lang et al. [9],

Preference Learning and Optimization for PLP Forests 299

Table 4. Mean and standard deviation of the Spearman’s rho results for voting rules
against Copeland across all datasets in learning PLP-forests of size 1000

Dataset Borda Top-3 Top-2 Maximin Plurality Top

BCW 0.9616 0.8405 0.8456 0.8310 0.8288 0.8196

CE 0.7741 0.5532 0.5384 0.4716 0.4591 0.4665

CA 0.9847 0.9413 0.9354 0.9435 0.9260 0.9277

GC 0.9898 0.9159 0.9108 0.9165 0.9088 0.8742

IN 0.9240 0.9867 0.9786 0.9823 0.9763 0.9706

MM 0.8678 0.9331 0.9234 0.9109 0.9005 0.9054

MS 0.9712 0.9353 0.9115 0.9433 0.9025 0.8898

NS 0.9939 0.9908 0.9851 0.9766 0.9768 0.9806

SH 0.9729 0.9968 0.9810 0.9786 0.9747 0.9785

TTT 0.9900 0.9916 0.9841 0.9931 0.9847 0.9531

VH 0.9691 0.8612 0.8346 0.8588 0.8573 0.7958

WN 0.9937 0.9740 0.9266 0.9101 0.9090 0.9015

Mean 0.9494 0.9100 0.8963 0.8930 0.8837 0.8719

SD 0.0632 0.1181 0.1182 0.1358 0.1364 0.1347

only some results are known. However, they suggest the two rules may be more
demanding computationally.

We studied our PLP-forest models experimentally. Our results showed that
using these voting rules for preferential datasets generated from real-world clas-
sification datasets yields models reflecting underlying preference relations with
high accuracy, exceeding that of PLP-forest models utilizing the Pairwise Major-
ity rule.

We also studied the correlation among the orders given by different PLP-
forest models, extending to the setting of “votes” over combinatorial domains
several earlier studies in the standard voting setting with a small number of
alternatives. We found that when compared to the model given by PLP-forests
with Copeland as an aggregator, all models showed high levels of correlation,
similar to those reported in the literature for the standard voting setting. Our
results suggest that using rules such as Borda or Top-3 clusters (the two closest
to Copeland) produces orders representative for all those that can be obtained
by combining a PLP-forest with a scoring rule.

For the Top-k Clusters rule, we developed methods to compute optimal out-
comes for orders they determine given a PLP-forest. Our experiments for when
k = 1, 2, 3 showed that the methods are computationally feasible. They also show
that optimal outcomes computed for the Top-k Clusters rules are near optimal
for orders determined by all other scoring rules.

Our results suggest that PLP-forest preference models with scoring rules as
aggregators, especially Top-k Clusters and Borda, have many attractive features.

300 X. Liu and M. Truszczynski

They can be learned so that to reflect underlying true preference relation with
high accuracy. They represent well orders that result from using other scoring
rules. Lastly, they support fast methods for computing optimal outcomes and
these outcomes are likely to be near optimal for orders given by other scoring
rules.

We also compare our PLP-forest models with the decision tree approach.
The decision trees learned from examples can approximate underlying orders
with higher accuracy (as high as 99% in our experiments). However, they do
have drawbacks not present in PLP-forest models. First, unlike in the case of
the PLP-forests, the relation defined by decision trees is not guaranteed to be a
total order (not even a partial order). Second, decision trees do not provide any
clear insights into key factors determining the underlying preference relations. In
contrast, the PLP-tree and PLP-forest models yield information about attributes
most significant for determining the preference order. For the PLP-tree model,
it is the attribute that labels the root, for the PLP-forest model, the attributes
appearing most frequently as the labels of the roots of its trees. Lastly they
do not offer effective ways to solve optimization tasks (finding optimal or near
optimal outcomes) while, as we show, PLP-tree and forest models do. These
drawbacks of decision trees make PLP-forests, despite their lower accuracy, an
attractive preference model for use in applications.

Our results provide evidence of low effect of the choice of a voting rule when
aggregating preference orders determined by trees in a PLP-forest on the final
preference order. Clearly, the strength of this observation is has to be quantified
by the range of the data sets we considered. Expanding the scope of experiments
to other domains implied by practice, as well as to randomly generated ones
is a goal for future research. It will provide a more detailed understanding of
sensitivity of the model to the choice of a voting rule.

Improving the accuracy of the PLP-forest model is the main challenge for
future work. There seem to be two natural directions. First, one can explore a
possibility of combining the PLP-forest and decision-tree models, for instance,
by using decision trees at leaf nodes of PLP-trees for comparison tests of out-
comes in the corresponding clusters. Second, one can investigate other PLP-tree
learning algorithms, possibly developing methods to find trees that best fit with
given sets of examples, rather than to use heuristics, as we do now. Another
promising direction is to extend the work of Bräuning et al. [3]. First, one can
generalize the concept of a preference list to the tree of preference lists. In this
way one can expand the ability of the preference list model to handle conditional
preferences. Second, similarly as we do in this work considering PLP-forests, that
is, collections of PLP-trees, one can study collections of preference list models.

Acknowledgments. The work of the second author was supported by the NSF grant
IIS-1618783.

Preference Learning and Optimization for PLP Forests 301

References

1. Ansótegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial
MaxSAT. In: Fox, M., Poole, D. (eds.) Proceedings of the 24th AAAI Conference
on Artificial Intelligence, AAAI 2010. AAAI Press (2010)

2. Booth, R., Chevaleyre, Y., Lang, J., Mengin, J., Sombattheera, C.: Learning con-
ditionally lexicographic preference relations. In: ECAI, pp. 269–274 (2010)

3. Bräuning, M., Hüllermeier, E., Keller, T., Glaum, M.: Lexicographic preferences
for predictive modeling of human decision making: a new machine learning method
with an application in accounting. Eur. J. Oper. Res. 258(1), 295–306 (2017)

4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
5. Felsenthal, D.S., Maoz, Z., Rapoport, A.: An empirical evaluation of six voting

procedures: do they really make any difference? Br. J. Polit. Sci. 23(01), 1–27
(1993)

6. Fraser, N.M.: Ordinal preference representations. Theor. Decis. 36(1), 45–67 (1994)
7. Gehrlein, W.V.: Condorcet’s paradox and the likelihood of its occurrence: different

perspectives on balanced preferences. Theor. Decis. 52(2), 171–199 (2002)
8. Hurley, B., O’Sullivan, B., Allouche, D., Katsirelos, G., Schiex, T., Zytnicki, M.,

De Givry, S.: Multi-language evaluation of exact solvers in graphical model discrete
optimization. Constraints 21(3), 413–434 (2016)

9. Lang, J., Mengin, J., Xia, L.: Aggregating conditionally lexicographic prefer-
ences on multi-issue domains. In: Milano, M. (ed.) CP 2012. LNCS, pp. 973–987.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7 69

10. Lang, J., Xia, L.: Sequential composition of voting rules in multi-issue domains.
Math. Soc. Sci. 57(3), 304–324 (2009)

11. Liu, X., Truszczynski, M.: Learning partial lexicographic preference trees and
forests over multi-valued attributes. In: Proceedings of the 2nd Global Confer-
ence on Artificial Intelligence (GCAI 2016). EPiC Series in Computing, vol. 41,
pp. 314–328. EasyChair (2016)

12. Liu, X., Truszczynski, M.: Aggregating conditionally lexicographic preferences
using answer set programming solvers. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.)
ADT 2013. LNCS (LNAI), vol. 8176, pp. 244–258. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41575-3 19

13. Liu, X., Truszczynski, M.: Learning partial lexicographic preference trees over com-
binatorial domains. In: Proceedings of the 29th AAAI Conference on Artificial
Intelligence (AAAI), pp. 1539–1545. AAAI Press (2015)

14. Liu, X., Truszczynski, M.: Reasoning with preference trees over combinatorial
domains. In: Walsh, T. (ed.) ADT 2015. LNCS (LNAI), vol. 9346, pp. 19–34.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23114-3 2

15. Mattei, N.: Empirical evaluation of voting rules with strictly ordered preference
data. In: Brafman, R.I., Roberts, F.S., Tsoukiàs, A. (eds.) ADT 2011. LNCS
(LNAI), vol. 6992, pp. 165–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24873-3 13

16. Myers, J.L., Well, A., Lorch, R.F.: Research Design and Statistical Analysis. Rout-
ledge, Abingdon (2010)

17. Schmitt, M., Martignon, L.: Complexity of Lexicographic Strategies on Binary
Cues. Preprint (1999)

https://doi.org/10.1007/978-3-642-33558-7_69
https://doi.org/10.1007/978-3-642-41575-3_19
https://doi.org/10.1007/978-3-319-23114-3_2
https://doi.org/10.1007/978-3-642-24873-3_13
https://doi.org/10.1007/978-3-642-24873-3_13

302 X. Liu and M. Truszczynski

18. Wilson, N.: Preference inference based on lexicographic models. In: Schaub, T.,
Friedrich, G., O’Sullivan, B. (eds.) Proceedings of the 21st European Conference
on Artificial Intelligence, ECAI 2014. Frontiers in Artificial Intelligence and Appli-
cations, vol. 263, pp. 921–926. IOS Press (2014)

19. Wilson, N., George, A.: Efficient inference and computation of optimal alterna-
tives for preference languages based on lexicographic models. In: Sierra, C. (ed.)
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intel-
ligence, IJCAI 2017, pp. 1311–1317 (2017)

Enumeration Complexity of Poor Man’s
Propositional Dependence Logic

Arne Meier(B) and Christian Reinbold

Leibniz Universität Hannover, Institut für Theoretische Informatik, Appelstrasse 4,
30167 Hannover, Germany

{meier,reinbold}@thi.uni-hannover.de

Abstract. Dependence logics are a modern family of logics of indepen-
dence and dependence which mimic notions of database theory. In this
paper, we aim to initiate the study of enumeration complexity in the
field of dependence logics and thereby get a new point of view on enu-
merating answers of database queries. Consequently, as a first step, we
investigate the problem of enumerating all satisfying teams of formu-
las from a given fragment of propositional dependence logic. We distin-
guish between restricting the team size by arbitrary functions and the
parametrised version where the parameter is the team size. We show
that a polynomial delay can be reached for polynomials and otherwise in
the parametrised setting we reach FPT delay. However, the constructed
enumeration algorithm with polynomial delay requires exponential space.
We show that an incremental polynomial delay algorithm exists which
uses polynomial space only. Negatively, we show that for the general prob-
lem without restricting the team size, an enumeration algorithm running
in polynomial space cannot exist.

1 Introduction

Consider the simple database scheme containing a single table Smartphone
with attributes Manufacturer (M), Serial Number (SN), Manufacture
Date (MD) and Bluetooth Support (BS), where Manufacturer and
Serial Number form the primary key. Now we are interested in all possi-
ble answers of a database query on Smartphone selecting entities with blue-
tooth support. In terms of dependence logic, a database instance T conforms
with the primary key condition if and only if T |= =({M,SN}, {MD,BS}).
Taking the selection of the query into consideration, we obtain the formula
=({M,SN}, {MD,BS}) ∧ BS for which we would like to enumerate satisfying
database instances. Since team semantics is commonly used in the area of depen-
dence logic, we model the database instance T as a team, that is, a set of assign-
ments, such that each assignment represents a row in Smartphone.

The task of enumerating all solutions of a given instance is relevant in several
prominent areas, e.g., one is interested in all tuples satisfying a database query,

This work was partially supported by DFG project ME4279/1-2.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 303–321, 2018.
https://doi.org/10.1007/978-3-319-90050-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_17&domain=pdf
http://orcid.org/0000-0002-8061-5376

304 A. Meier and C. Reinbold

DNA sequencings, or all answers of a web search. In enumeration complexity
one is interested in outputting all solutions of a given problem instance without
duplicates. Often, the algorithmic stream of solutions has to obey a specific
order, in particular, on such order increasingly arranges solutions with respect
to their cost. In view of this, the enumeration task (with respect to this order)
outputs the cheapest solutions first. Of course, all these algorithms usually are
not running in polynomial time as there often exist more than polynomially many
solutions. As a result, one classifies these deterministic algorithms with respect
to their delay [1–3]. Informally, the delay is the time which elapses between
two output solutions and guarantees a continuous stream of output solutions.
For instance, the class DelayP then encompasses problems for which algorithms
with a polynomial delay (in the input length) exist. Another class relevant to
this study is IncP, incremental P. For this class the delay of outputting the
ith solution of an instance is polynomial in the input size plus the index i of
the solution. Consequently, problem instances exhibiting exponentially many
solutions eventually possess an exponential delay whereas, in the beginning, the
delay was polynomial. Some natural problems in this class are known such as
enumerating all minimal triangulations [4] or some problems for matroids [5].

A prominent approach to attacking computationally hard problems is the
framework of parametrised complexity by Downey and Fellows [6,7]. Essentially,
one searches for a parameter k of a given problem such that the problem can be
solved in time f(k) · nO(1) instead of nf(k) where n is the input length and f is
an arbitrary recursive function. Assuming that the parameter is slowly growing
or even constant, then the first kind of algorithms is seen relevant for practice.
In these cases, one says that the problem is fixed parameter tractable, or short,
in FPT. A simple example here is the propositional satisfiability problem with
the parametrisation numbers of variables. For this problem, the straightforward
brute-force algorithm already yields FPT. Recently, this framework has been
adapted to the field of enumeration by Creignou et al. [8,9]. There, the authors
introduced the corresponding enumeration classes DelayFPT and IncFPT and
provided some characterisations of these classes.

In 2007, Väänänen introduced dependence logic (DL) [10] as a novel variant of
Hintikka’s independence-friendly logic. This logic builds on top of compositional
team semantics which emerges from the work of Hodges [11]. In this logic, the sat-
isfaction of formulas is interpreted on sets of assignments, i.e., teams, instead of
a single assignment as in classical Tarski semantics. Significantly, this semantics
allows for interpreting reasoning in this logic in the view of databases. Essentially,
a team then is nothing different than a database: its domain of variables is the
set of columns and its (team) members, that is, assignments, can be seen as rows
in the table. As a result, the aforementioned dependence atoms allow for express-
ing key properties in databases, e.g., functional dependencies. On that account,
many research from the area of databases coalesced with scientific results from
logic, complexity theory and further other disciplines [12]. As a result, within
the team semantics setting several different formalisms have been investigated
that have counterparts in database theory: inclusion and exclusion dependencies

Enumeration Complexity of Poor Man’s Propositional Dependence Logic 305

[13–16], functional dependence (the dependence atom =(P,Q)) [10], and inde-
pendence [17]. Such operators will be the topic of future research connecting to
the here presented investigations.

To bring the motivation full circle, the study of enumeration in dependence
logic is the same as investigating the enumeration of answers of specific database
queries described over some formulas in some logic. For instance, consider a
dependence logic formula that specifies some database related properties such
as functional or exclusion dependencies of some attributes. Now one is interested
in the question whether this specification is meaningful in the sense that there
exists a database which obeys these properties. This problem can be seen as the
satisfiability problem in dependence logic. Further connections to database the-
ory have been exemplified by Hannula et al. [18]. The study of database queries
is a deeply studied problem and exists for several decades now. Our aim for this
paper is to initiate the research on enumeration (in databases) from the perspec-
tive of dependence logic. This modern family of logics might give fresh insights
into this settled problem and produce new enumeration techniques that will help
at databases as well. From a computational complexity perspective, DL is well
understood: most of the possible operator fragments have been classified [19,20].
However, it turned out that model checking and satisfiability for propositional
dependence logic PDL are already NP-complete [21,22]. As a result, tractable
enumeration of solutions in the full logic is impossible (unless P and NP coincide)
and we focus on a fragment of PDL which we will call, for historical reasons, the
Poor Man’s fragment [23].

In this paper, we investigate the problem of enumerating all satisfying teams
of a given Poor Man’s propositional dependence logic formula. In particular,
we distinguish between restricting the team size by arbitrary functions f and
the parametrised version where the parameter is the team size. We show that
DelayP can be reached if f is a polynomial in the input length and otherwise
the parametrised approach leads to DelayFPT. However, the constructed DelayP
enumeration algorithm requires exponential space. If one desires to eliminate this
unsatisfactory space requirement, we show that this can be achieved by paying
the price of an increasing delay, i.e., then an IncP algorithm can be constructed
which uses polynomial space only. Here, we show, on the downside, that for
the general problem without restricting the team size an enumeration algorithm
running in polynomial space cannot exist.

Proofs omitted for space reasons can be found in the technical report [24].

2 Preliminaries

Further, the underlying machine concept will be RAMs as we require data struc-
tures with logarithmic costs for standard operations. A detailed description of
the RAM computation model may be found in [25]. The space occupied by a
RAM is given by the total amount of used registers, provided that the content of
each register is polynomially bounded in the size of the input. Furthermore, we
will follow the notation of Durand et al. [26], Creignou et al. [8] and Schmidt [2].

306 A. Meier and C. Reinbold

The complexity classes of interest are P and NP (over the RAM model which is
equivalent to the standard model over Turing machines in this setting).

Team-Based Propositional Logic. Let V be a (countably infinite) set of variables.
The class of all Poor Man’s Propositional formulas PL− is derived via the gram-
mar

ϕ ::= x | ¬x | 0 | 1 | ϕ ∧ ϕ,

where x ∈ V. The set of all variables occurring in a propositional formula ϕ is
denoted by Var(ϕ).

Now we will specify the notion of teams and its interpretation on propo-
sitional formulas. An assignment over V is a mapping s : V → {0, 1}. We set
2V := {s : s assignment over V}. A team T over V is a subset T ⊆ 2V . Conse-
quently, the set of all teams over V is denoted by P

(
2V)

. If X is a subset of V,
we set T

∣
∣
X

:=
{
s
∣
∣
X

: s ∈ T
}

, where s
∣
∣
X

is the restriction of s on X. If T has
cardinality k ∈ N, we say that T is a k-Team. If ϕ is a formula, then a team
(assignment) over Var(ϕ) is called a team (assignment) for ϕ.

A team-based propositional formula ϕ is constructed by the rule set of PL−

with the extension ϕ ::= =(P,Q), where P,Q are sets of arbitrary variables. We
write =(x1, x2, . . . , xn) as a shorthand for =({x1, x2, . . . , xn−1}, {xn}) and set
PDL− := PL−(=(·)) for the formulas of Poor Man’s Propositional Dependence
Logic.

Definition 1 (Satisfaction). Let ϕ be a team-based propositional formula and
T be a team for ϕ. We define T |= ϕ inductively by

T |= x :⇔ s(x) = 1 ∀s ∈ T,

T |= ¬x :⇔ s(x) = 0 ∀s ∈ T,

T |= 1 :⇔ true,

T |= 0 :⇔ T = ∅,

T |= ϕ ∧ ψ :⇔ T |= ϕ and T |= ψ,

T |= =(P,Q) :⇔ ∀s, t ∈ T : s
∣
∣
P

= t
∣
∣
P

⇒ s
∣
∣
Q

= t
∣
∣
Q

We say that T satisfies ϕ iff T |= ϕ holds.

Note that we have T |= (x ∧ ¬x) iff T = ∅. This observation motivates the
definition for T |= 0. Observe that the evaluation in classical propositional logic
occurs as the special case of evaluating singletons in team-based propositional
logic.

Definition 2 (Downward closure). A team-based propositional formula ϕ is
called downward closed, if for every team T we have that T |= ϕ ⇒ ∀S ⊆ T :
S |= ϕ. An operator ◦ of arity k is called downward closed, if ◦(ϕ1, . . . , ϕk) is
downward closed for all downward closed formulas ϕi, i = 1, . . . , k. A class φ of
team-based propositional formulas is called downward closed, if all formulas in
φ are downward closed.

Enumeration Complexity of Poor Man’s Propositional Dependence Logic 307

The following lemma then is straightforward to prove.

Lemma 1. All atoms and operators in PDL− are downward closed. In particu-
lar, PDL− is downward closed.

Enumeration Problems. Let Σ be a finite alphabet and (S, ≤) a partially ordered
set of possible solutions. An enumeration problem is a triple E = (Q, Sol, ≤)
such that (i) Q ⊂ Σ∗ is a decidable language and (ii) Sol : Q → P(S) is a
computable function. For an element x ∈ Q we call x an instance and Sol(x) its
set of solutions. If ≤ is the trivial poset given by x ≤ y :⇔ x = y, we omit it
and write E = (Q, Sol). Analogously, we write x < y for x ≤ y and x
= y.

Definition 3 (Enumeration algorithm). Let E = (Q, Sol, ≤) be an enumer-
ation problem. A deterministic algorithm A is an enumeration algorithm for E
if A terminates for every input x ∈ Q, outputs the set Sol(x) without duplicates
and for every s, t ∈ Sol(x) with s < t the solution s is outputted before t.

Definition 4 (Delay). Let A be an enumeration algorithm for the enumeration
problem E = (Q, Sol, ≤) and x ∈ Q. The i-th delay of A is defined as the elapsed
time between outputting the i-th and (i + 1)-th solution of Sol(x), where the 0-th
and (|Sol(x)| + 1)-st delay are considered to happen at the start and the end of
the computation respectively. The 0-th delay is called precomputation phase and
the (|Sol(x)| + 1)-st delay is called postcomputation phase.

Definition 5. Let E = (Q, Sol, ≤) be an enumeration problem and A be an
enumeration algorithm for E. A is

1. an IncP-algorithm if there exists a polynomial p such that the i-th delay on
input x ∈ Q is bounded by p(|x| + i).

2. a DelayP-algorithm if there exists a polynomial p such that all delays on input
x ∈ Q are bounded by p(|x|).

3. a DelaySpaceP-algorithm if it is a DelayP-algorithm using polynomial amount
of space with respect to the size of the input.

For ease of notation, we define the classes DelayP (IncP,DelaySpaceP) as
the class of all enumeration problems admitting a DelayP- (IncP, DelaySpaceP)-
algorithm. Now we introduce the parametrised version of enumeration problems.
The extensions are similar to those when extending P to FPT. We follow Creignou
et al. [8].

Definition 6 (Parametrised enumeration problem). An enumeration
problem (Q,Sol,≤) together with a polynomial time computable parametrisation
κ : Σ∗ → N is called a parametrised enumeration problem E = (Q, κ, Sol, ≤).
As before, if ≤ is omitted, we assume ≤ to be trivial.

Definition 7. Let A be an enumeration algorithm for a parametrised enumera-
tion problem E = (Q, κ, Sol, ≤). If there exist a polynomial p and a computable
function f : N → N such that the i-th delay on input x ∈ Q is bounded by

308 A. Meier and C. Reinbold

f(κ(x)) · p(|x| + i), then A is an IncFPT-algorithm. We call A a DelayFPT-
algorithm if all delays on input x ∈ Q are bounded by f(κ(x)) · p(|x|). The class
IncFPT contains all enumeration problems that admit an IncFPT-algorithm. The
class DelayFPT is defined analogously.

Group Action. The following section provides a compact introduction in group
actions on sets. For a deeper introduction see, for instance, Rotman’s textbook
[27].

Definition 8 (Group action). Let G be a group with identity element e and X
be a set. A group action of G on X, denoted by G � X, is a mapping G×X → X,
(g, x) �→ gx, with

1. ex = x ∀x ∈ X
2. (gh)x = g(hx) ∀g, h ∈ G, x ∈ X.

Now observe the following. Let G be a group and X a set. The mapping
(g, h) �→ gh for g, h ∈ G defines a group action of G on itself. A group action
G � X induces a group action of G on P(X) by gS := {gs : s ∈ S} for all
g ∈ G, S ⊆ X. Note that this group action preserves the cardinality of sets.

Definition 9 (Orbit). Let G � X be a group action and x ∈ X. Then the
orbit of x is given by Gx := {gx : g ∈ G} ⊆ X.

Proposition 1 ([27]). Let G � X be a group action and x, y ∈ X. Then either
Gx = Gy or Gx ∩ Gy = ∅. Consequently the orbits of G � X partition the set
X.

Definition 10 (Stabiliser). Let G � X be a group action and x ∈ X. The
stabilizer subgroup of x is given by Gx := {g ∈ G : gx = x} and indeed is a
subgroup of G.

Proposition 2 (Orbit-Stabiliser theorem, [27, Theorem 3.19]). Let G be a
finite group acting on a set X. Let x ∈ X. Then the mapping gGx �→ gx is a
bijection from G/Gx to Gx. In particular, we have that |Gx| · |Gx| = |G|.

Proposition 3 (Cauchy-Frobenius lemma, [27, Theorem 3.22]). Let G
be a finite group acting on a set X. Then the amount of orbits is given by
1

|G|
∑

g∈G |{x ∈ X : gx = x}|.

3 Results

In this section, we investigate the complexity of enumerating all satisfying teams
for various fragments of team-based propositional logic. After introducing the
problem EnumTeam and its parametrised version p-EnumTeam we develop
two enumeration algorithms for PDL−, either guaranteeing polynomial delay or
incremental delay in polynomial space.

Enumeration Complexity of Poor Man’s Propositional Dependence Logic 309

Problem 1. Let Φ be a class of team-based propositional formulas and f : N → N

be a computable function. Then we define EnumTeam(Φ, f) := (Φ, Sol) where

Sol(ϕ) :=
{
∅
= T ∈ P

(
2Var(ϕ)

)
: T |= ϕ, |T | ≤ f(|ϕ|)

}
for ϕ ∈ Φ.

As we are interested in non-empty teams as solutions, we excluded the ∅ from
the set of all solutions. Nevertheless, formally by the empty team property, it
always holds that ∅ |= ϕ.

Problem 2. Let Φ be a class of team-based propositional formulas and f : N →
N a computable function. Then p-EnumTeam(φ) := (Φ × N, κ, Sol) where
κ((ϕ, k)) := k and

Sol((ϕ, k)) :=
{

∅
= T ∈ P
(
2Var(ϕ)

)
: T |= ϕ, |T | ≤ k

}
for (ϕ, k) ∈ Φ × N.

We write EnumTeam(Φ) for EnumTeam(Φ, n �→ 2n). Since |T | ≤ 2|ϕ| holds
for every team T for ϕ, we effectively eliminate the cardinality constraint. As we
shall see, the order in which the teams are outputted plays an important role in
the following reasoning. There are two natural orders on teams to consider.

Definition 11 (Order of cardinality). Let R,S be two teams. Then we define
a partial order on the set of all teams by R ≤size S :⇔ |R| < |S| or R = S.

When a formula ϕ is given, we assume to have a total order ≤ on 2Var(ϕ)

such that comparing two elements is possible in O(|Var(ϕ)|) and iterating over
the set of all assignments is feasible with delay O(|Var(ϕ)|). When interpreting
each assignment as a binary encoded integer, we obtain an appropriate order
on 2Var(ϕ) by translating the order on N0. If necessary, one could demand that
adjacent assignments differ in only one place by using the order induced by the
Gray code. Now we are able to define the second order.

Definition 12 (Lexicogr. order). Let R = {r1, . . . , rn} and S = {s1, . . . , sm}
be two teams such that r1 < · · · < rn and s1 < · · · < sm. Let i be the maximum
over all j ∈ N0 such that j ≤ min(n,m), r� = s� for all � ∈ {1, . . . , j}. Then we
define a partial order on P

(
2Var(ϕ)

)
by

R ≤lex S :⇔
{

n ≤ m, i = min(n,m)
ri+1 < si+1, else.

Observe that the lexicographical order is a total order that does not extend
the order of cardinality. For example, we have {00, 01, 10} <lex {00, 10} when
assignments are ordered according to their integer representation.

Problem 3. Let Φ be a class of team-based propositional formulas and f : N → N

be a computable function. We define EnumTeamSize(Φ, f) := (Φ, Sol, ≤size)
with Sol as in Problem 1. p-EnumTeamSize is defined accordingly.

310 A. Meier and C. Reinbold

3.1 Enumeration in Poor Man’s Propositional Dependence Logic

Now, we start with the task of enumerating satisfying teams for the fragment
PDL−, i.e., Poor Man’s Propositional Logic. The delay of the resulting algo-
rithm is polynomial regarding the size of the input and the maximal size of an
outputted teams. As teams may grow exponentially large according to the input
size, the delay will not be polynomial in the classical sense of DelayP. As a result,
we proceed to DelayFPT and set the maximal cardinality of outputted teams as
the parameter. Note that the drawback of having a polynomial delay in the out-
put is minor. When following algorithms process the outputted teams, they have
to input them first, requiring at least linear time in the output size.

In fact, we will see that we cannot obtain a DelayP-algorithm when the output
is sorted by cardinality. This sorting, however, is an inherent characteristic of
our algorithm as satisfying teams of cardinality k are constructed by analysing
those of cardinality k − 1.

Before diving into details, we would like to introduce some notation used in
this section. Let ϕ ∈ PDL− be fixed, k ∈ N0,

n := |Var(ϕ)|,

Tk :=
{

T ∈ P
(
2Var(ϕ)

)
: T |= ϕ, |T | = k

}
,

T 0
k := {T ∈ Tk : (∀x ∈ Var(ϕ) : x �→ 0) ∈ T} ,

tk := |Tk|,
t0k := |T 0

k |.

An assignment s ∈ 2Var(ϕ) is depicted as a sequence of 0 and 1, precisely:
s = s(x1)s(x2) . . . s(xn).

Example 1. For ϕ := =(x1, x2) we have: n = 2 and consequently

T2 = {{00, 10}, {00, 11}, {01, 10}, {01, 11}},

T 0
2 = {{00, 10}, {00, 11}},

T3 = T 0
3 = ∅.

Note that formulas of the form ϕ ≡
(∧

x∈I x
)
∧

(∧
x∈J ¬x

)
∧

(∧
�∈L =(P�, Q�)

)

can be simplified w.l.o.g. to

ϕ′ :=
∧

�∈L

=(P ′
� , Q

′
�) with P ′

� := P� \ (I ∪ J), Q′
� := Q� \ (I ∪ J). ()

Then all satisfying teams for ϕ can be recovered by extending those for ϕ′.
For instance, the formula

x3 ∧ =({x1}, {x2, x3}) ∧ =({x4}, {x2, x3})

may be reduced to =(x1, x2) ∧ =(x4, x2). The team {00−0, 00−1} satisfies
the latter formula (‘−’ indicates the missing x3) and is extended to {0010, 0011}
in order to satisfy the former one.

Enumeration Complexity of Poor Man’s Propositional Dependence Logic 311

The Group Action of Flipping Bits. By the semantics of =(·) we see that
flipping the bit at a fixed position in all assignments of a team T is an invari-
ant for T |= =(P,Q). For example, the teams {00, 10} and {00, 11} satisfy
=(x1, x2). The remaining 2-teams satisfying the formula are given by {01, 11}
and {01, 10}. Note that these teams may be constructed from the previous ones
by flipping the value of x2. Accordingly, it would be enough to compute the sat-
isfying teams {00, 10} and {00, 11}, constructing the other 2-teams by flipping
bits. The concept of computing a minor set of satisfying k-Teams and construct-
ing the remaining ones by flipping bits is the main concept of our algorithm for
ensuring FPT-delay.

By identifying each assignment s with the vector (s(x1), . . . , s(xn)) we obtain
a bijection of sets Fn

2 ↔ 2Var(ϕ). We will switch between interpreting an element
as an assignment or an F2-vector as necessary, leading to expressions like s + t
for assignments s and t. Those may seem confusing at first, but become obvious
when interpreting s and t as vectors. Vice versa, we will consider F2-vectors as
assignments that may be contained in a team. When both notations are to be
used, this is indicated by taking s ∈ F

n
2

∼= 2Var(ϕ) instead of simply writing
s ∈ F

n
2 or s ∈ 2Var(ϕ).

Definition 13 (Group action of flipping bits). By the observation after
Definition 8 the group action of (Fn

2 ,+) on itself induces a group action of F
n
2

on P(Fn
2). On that account we obtain a group action F

n
2 � P

(
2Var(ϕ)

)
, called

group action of flipping bits.

Let ei be the i-th standard vector of F
n
2 . Then the operation of ei on

P
(
2Var(ϕ)

)
corresponds to flipping the value for xi in each assignment of a team.

Theorem 1. Let k ∈ N. The restriction of F
n
2 � P(Fn

2) on Tk yields a group
action F

n
2 � Tk.

Proof. As the axioms of group actions still hold on a subset of P(Fn
2), it remains

to show that zT ∈ Tk ∀z ∈ F
n
2 , T ∈ Tk. Let z ∈ F

n
2 and T ∈ Tk. By the remark

following Definition 8 we have |zT | = k. Let P ⊆ Var(ϕ) and s, t ∈ 2Var(ϕ). If
s′, t′ ∈ 2Var(ϕ) arise from s, t by flipping the value for a variable xi, then obviously
s
∣
∣
P

= t
∣
∣
P

⇔ s′∣∣
P

= t′
∣
∣
P

. It follows that T |= =(P,Q) ⇔ zT |= =(P,Q) for all
P,Q ⊆ Var(ϕ). When assuming that ϕ has the form of (), it clearly holds that
zT |= ϕ because of T |= ϕ. This proves zT ∈ Tk.

Lemma 2. Let T ∈ Tk, k ∈ N. Then, we have that F
n
2T ∩ T 0

k
= ∅. For this
reason T 0

k contains a representative systems for the orbits of Fn
2 � Tk.

Proof. Take s ∈ T ⊆ 2Var(ϕ) ∼= F
n
2 . Then sT ∈ T 0

k because of z + z =
0 for all
z ∈ F

n
2 .

The previous lemma states that we can compute Tk from T 0
k by generating

orbits. Next we want to present and analyse an algorithm for enumerating those
orbits. The results are given in Theorem 2.

312 A. Meier and C. Reinbold

Definition 14. Let
0
= s = (s1, . . . , sn) ∈ F
n
2 and B ⊆ F

n
2 \{
0}. Then we define

last(s) := max {i ∈ {1, . . . , n} : si = 1}, and last(B) := {last(s) : s ∈ B}.

Definition 15. Let B be a subset of F
n
2 . Then the subspace generated by B is

defined by span(B) := {b1 + · · · + br : r ∈ N0, bi ∈ B ∀i ∈ {1, . . . , r}}.

Lemma 3. Let U be a subspace of the F2-vector space F
n
2 . Let B ⊆ U \ {
0} be

a maximal subset with

b
= b′ ⇒ last(b)
= last(b′) ∀b, b′ ∈ B. (1)

Then B is a basis for U .

Proof. First we show that any set A ⊆ U \ {
0} satisfying (1) is linearly inde-
pendent. We conduct an induction over |A|. For |A| = 1 the claim is obvious.
Because of (1) there exists an element a0 ∈ A with last(a0) > last(a) for all
a0
= a ∈ A. When considering the last(a0)-th component, clearly the equation

a0 =
∑

a0 �=a∈A

λaa, λa ∈ F2

has no solution. As A \ {a0} is linearly independent by induction hypothesis, it
follows that A is linearly independent.

Now assume that B does not generate U . We take an element s ∈ U \
span(B) with minimal last(s). As B is a maximal subset fulfilling (1), we have
that last(b) = last(s) for a suitable element b ∈ B. But then s − b ∈ U \ span(B)
with last(s − b) < last(s) contradicts the minimality of s.

Theorem 2. Let T ∈ Tk, k ∈ N. Then F
n
2T can be enumerated with delay

O(k3n).

Proof. W.l.o.g. let T ∈ T 0
k . Otherwise, consider the team zT with an arbitrary

z ∈ T . Note that T may have a nontrivial stabilizer subgroup so that dupli-
cates occur when simply applying each z ∈ F

n
2 to T . However, Proposition 2

states that we can enumerate the orbit of T without duplicates when applying
a representative system for F

n
2/(Fn

2)T .
When taking F

n
2 as a vector space over F2, the subspaces of Fn

2 correspond to
the subgroups of (Fn

2 ,+). In view of this any basis for a complement of the stabi-
lizer subgroup (Fn

2)T of T in F
n
2 generates a representative system for Fn

2/(Fn
2)T .

Take a basis B of (Fn
2)T as in Lemma 3. Set C := {ei : i ∈ {1, . . . , n}\last(B)},

where ei denotes the i-th standard vector of F
n
2 . By construction of C we can

arrange the elements of B ∪ C so that the matrix containing these elements as
columns has triangular shape with 1-entries on its diagonal. Consequently B ∪C
is a basis for F

n
2 and C is a basis for a complement of (Fn

2)T . Now it remains to
construct B as desired. For s ∈ 2Var(ϕ) ∼= F

n
2 we have

s ∈ (Fn
2)T ⇒ sT = T ⇒ s = s +
0 ∈ T.

Enumeration Complexity of Poor Man’s Propositional Dependence Logic 313

Algorithm 1. Enumerating orbits
Input: A team T with �0 ∈ T
Output: The orbit F

n
2T of T where each outputted team is sorted

1 Blast ← ∅; /* Assume that Blast is sorted */

2 for �0 �= s ∈ T do /* < k iterations */
3 if last(s) ∈ Blast then continue; /* O(n) */
4 failed ← false;
5 for t ∈ T do /* ≤ k iterations */
6 if s + t /∈ T then failed ← true; /* O(kn) */

7 if not failed then Blast ← Blast ∪ {last(s)}; /* O(n) */

8 Clast ← {1, . . . , n} \ Blast; /* O(n) */
9 for s ∈ span({ei : i ∈ Clast}) do

10 Compute sT ; /* O(kn) */
11 Sort sT ; /* O(kn log k) */
12 output sT ;

As a result, we can compute (Fn
2)T by checking sT = T for |T | = k elements

in F
n
2 . In fact it is enough to check sT ⊆ T as we have |sT | = |T |. We obtain

B by inserting each element of (Fn
2)T \ {
0} preserving (1) into B. This shows

that Algorithm 1 outputs F
n
2T without duplicates. The delay is dominated by

the precomputation phase (lines 1 to 8), which is O(k3n). Note that we sort the
k assignments of each team in ascending order before returning it.

Finally we would like to relate tk to t0k. The larger the quotient tk/t0k, the
more computation costs are saved by generating orbits instead of computing Tk

immediately.

Theorem 3. Let k ∈ N with tk
= 0. Then, we have that tk/t0k = 2n/k.

Proof. Because of tk
= 0 and Lemma 2 it follows that t0k
= 0. For this reason
we can choose T ∈ T 0

k . We claim

|Fn
2T ∩ T 0

k | =
k

|(Fn
2)T | . (2)

For any s ∈ 2Var(ϕ) ∼= F
n
2 we have that

sT ∈ T 0
k ⇔ ∃t ∈ T : s + t =
0 ⇔ ∃t ∈ T : s = t ⇔ s ∈ T. (3)

Consequently we have F
n
2T ∩ T 0

k = {sT : s ∈ T} =: TT. Let r, s ∈ T . Both
elements yield the same team rT = sT iff s ∈ r(Fn

2)T so that for any fixed r ∈ T
we find exactly |r(Fn

2)T | = |(Fn
2)T | ways of expressing rT in the form of sT ,

where s ∈ T by (3). When iterating over the k elements sT , s ∈ T , each team
in TT is counted |(Fn

2)T | times. It follows that

314 A. Meier and C. Reinbold

|TT | =
k

|(Fn
2)T | ,

proving (2).
By Lemma 2 we find a representative system R ⊆ T 0

k for the orbits of
F

n
2 � Tk. With Eq. (2) and the Orbit-Stabilizer theorem (see Proposition 2) we

obtain

tk =
∑

T∈R

|Fn
2T | (by Proposition 1)

=
∑

T∈T 0
k

|Fn
2T |

|Fn
2T ∩ T 0

k |

=
∑

T∈T 0
k

|(Fn
2)T |
k

· |Fn
2T | (by (2))

=
∑

T∈T 0
k

|(Fn
2)T |
k

· 2n

|(Fn
2)T | (by Proposition 2)

=
2n

k

∑

T∈T 0
k

1

=
2n

k
t0k.

Constructing T 0
k . Now that we are able to construct all satisfying k-teams

from a representative system, the next step is the construction of T 0
k . For this

purpose the concept of coherence will prove useful.

Definition 16 ([28, Definition 3.1]). Let φ be a team-based propositional for-
mula. Then φ is k-coherent iff for all teams T we have that

T |= φ ⇔ R |= φ ∀R ⊆ T with |R| = k.

Proposition 4 ([28, Proposition 3.3]). The atom =(·) is 2-coherent.

Proposition 5 ([28, Proposition 3.4]). If φ, ψ are k-coherent then φ ∧ ψ is
k-coherent.

Let T = {s1, . . . , sk} be a team with s1 < · · · < sk, k ≥ 2. Then write T 1
red :=

{s1, . . . , sk−1}, T 2
red := {s1, . . . , sk−2, sk}, max(T) := sk. The following lemma

provides a powerful tool for constructing the sets T 0
k .

Lemma 4. Let T be as above and k := |T | ≥ 3. Then the following are equiva-
lent:

1. T ∈ T 0
k ,

2. T 1
red, T

2
red ∈ T 0

k−1 and {
0, sk−1 + sk} ∈ T 0
2 .

Enumeration Complexity of Poor Man’s Propositional Dependence Logic 315

Algorithm 2. Constructing T 0
k

Input: k ∈ N, k ≥ 2
Dependencies: If k > 2: D2[{�0}], Dk−1 of the previous iteration
Result: T 0

k

1 T 0
k ← ∅, Dk ← new Map(Team, List(Assignment));

2 if k = 2 then

3 D2[{�0}] ← ∅;

4 for �0 �= s ∈ 2Var(ϕ) do /* ≤ 2n iterations */

5 if {�0, s} |= ϕ then /* O(|ϕ|) */

6 D2[{�0}] ← D2[{�0}] ∪ {s}; /* O(n) */

7 T 0
2 ← T 0

2 ∪ {�0, s}; /* O(n) */

8 else
9 for (T, L) ∈ Dk−1 do

10 for r ∈ L do /* t0k−1 iterations */
11 T ′ ← T ∪ {r}, Dk[T ′] ← ∅;
12 for s ∈ L with s > r do /* ≤ 2n iterations */

13 if r + s ∈ D2[{�0}] then /* O(n) */
14 Dk[T ′] ← Dk[T ′] ∪ {s}; /* O(kn) */
15 T 0

k ← T 0
k ∪ {T ′ ∪ {s}}; /* O(kn) */

Algorithm 2 computes the sets T 0
k by exploiting the previous lemma. In order

to ensure fast list operations, we manage teams in tries [29, Chap. 6.3]. Since any
team of cardinality k may be described by kn bits, the standard list operations
as searching, insertion and deletion are realised in O(kn). We organise satisfying
teams such that all teams of cardinality k which only differ in their maximal
assignment are described by a list Dk[T ′], where T ′ is the team containing the
common k − 1 smaller assignments. It suffices to store the maximal assignment
of each team T described in Dk[T ′] since T may be recovered by T ′ and max(T).
Hence Dk becomes a collection of lists indexed by teams of cardinality k − 1.
The following lemma states the correct construction of Dk in Algorithm 2.

Lemma 5. Let k ≥ 2. For T ∈ T 0
k we have that max(T) ∈ Dk[T 1

red]. Vice versa,
if s ∈ Dk[T], then it follows that T ∪ {s} ∈ T 0

k and s > max(T).

Corollary 1. Algorithm2 correctly constructs the sets T 0
k and it requires time

t0k−1 · 2n · O(k|ϕ|) on input k ∈ N.

Although by Corollary 1 Algorithm 2 does not perform in polynomial time
on input k ∈ N, we can ensure polynomial delay when distributing its execution
over the process of outputting all satisfying teams of cardinality k − 1. For this
reason we investigate the costs of computing T 0

k divided by tk−1. With Corollary

1 and k − 1 = t0k−1·2n
tk−1

, which is a transformation of the equation in Theorem 3,
we obtain

316 A. Meier and C. Reinbold

Algorithm 3. Enumerating satisfying teams in PDL−, ordered by cardi-
nality
Input: A team-based propositional formula ϕ as in Equation (�), k ∈ N

Output: All teams T for ϕ with T |= ϕ, 1 ≤ |T | ≤ k

1 T 0
1 ← {{�0}};

2 for � = 2, . . . , k + 1 do

3 simultaneously

4 while T 0
�−1 �= ∅ do

5 Choose T ∈ T 0
�−1;

6 for T ′ ∈ F
n
2 T (Algorithm 1) do output T ′ and T 0

�−1 ← T 0
�−1 \ {T ′} ;

7 simultaneously Compute T 0
� by Algorithm 2;

8 if T 0
� = ∅ then break;

computationCosts(T 0
k)

tk−1
=

t0k−1 · 2n · O(k|ϕ|)
tk−1

= (k − 1) · O(k|ϕ|) = O(k2|ϕ|).

Since the delay of generating the orbits F
n
2T is O(k3n) by Theorem 2, the

overall delay of Algorithm3 is bounded by O(k3|ϕ|). Note that the cost of remov-
ing elements in T 0

k , which is O(kn), is contained in O(k3|ϕ|). Proposition 1 and
Lemma 2 witness a correct enumeration of Algorithm 2 without duplicates. In
practise, we interleave both computation strands by executing k iterations of
the loop at line 12 in Algorithm2 whenever a team is outputted. Finally, we
conclude.

Theorem 4. 1. p-EnumTeamSize(PDL−) ∈ DelayFPT,
2. EnumTeamSize(PDL−, f) ∈ DelayP for any poly. time computable function

f ∈ nO(1).

Consequences of Sorting by Cardinality. In the previous section we have
seen that the restriction on polynomial teams is sufficient to obtain a DelayP-
algorithm for PDL−. As we will see in this section, the restriction is not only
sufficient, but also necessary when the output is sorted by its cardinality. Con-
sequently, the algorithm presented above is optimal regarding output size.

Lemma 6. Let k ≥ 2 and ϕ(x1, . . . , xk) :=
∧k−1

i=1 =(xi, xk) ∈ PDL−. Then for

any team T
= ∅ with T |= ϕ and |T | ≥ 3 we have that
∣
∣
∣T

∣
∣
{xk}

∣
∣
∣ = 1.

Theorem 5. Let f be a polynomial time computable function. Then we have
that EnumTeamSize(PDL−, f) ∈ DelayP if and only if f ∈ nO(1).

Proof. “⇐”: immediately follows from Theorem 4.
“⇒”: Let f /∈ nO(1). Assume that EnumTeamSize(PDL−, f) ∈ DelayP holds

via an algorithm with a delay bounded by nc, c ∈ N. Then there exists k ∈ N

such that z := min{f(k), 2k−1} > 4c · kc ≥ k ≥ 3. Let ϕ be as in Lemma 6.

Enumeration Complexity of Poor Man’s Propositional Dependence Logic 317

Obviously, there exist teams T0, T1 ∈ Tz with s(xk) = i for all s ∈ Ti, i ∈ {0, 1}.
Since the elements in Tz have to be outputted in succession and

∣
∣
∣T

∣
∣
{xk}

∣
∣
∣ = 1

for any T ∈ Tz, we can choose T0 and T1 such that both teams are outputted
in consecutive order. However, both teams differ in at least z bits describing
the evaluation at xk. For this reason the delay is at least z > (4k)c ≥ (|ϕ|)c,
contradicting that the delay is bounded by nc.

Corollary 2. EnumTeamSize(PDL−) /∈ DelayP.

The trick of examining the symmetric difference of consecutive teams gives
rise to the previous theorem. Unfortunately this trick cannot be applied to arbi-
trary orders and certainly fails for the lexicographical order. In order to prove this
claim, consider Theorem 6 with S = 2Var(ϕ), X =

{
T ∈ P

(
2Var(ϕ)

)
: T |= ϕ

}
.

Theorem 6. Let S = {s1, . . . , sn} be a finite totally ordered set and X ⊆ P(S)
be a downward closed set, meaning T ∈ X ⇒ R ∈ X ∀R ⊆ T. When X is
ordered lexicographically in respect with the order on S, the symmetric difference
� between two consecutive elements in X is at most 3.

3.2 Limiting Memory Space

Next we examine the memory usage of Algorithm 3. Throughout the execution,
D2[{
0}], Dk and T 0

k have to be saved. However the size of those lists increases
exponentially when raising the size of the outputted teams or the amount of vari-
ables occurring in the formula ϕ. In general, Algorithm 3 requires space O(22

n

),
and O(2n) when fixing the parameter k. In fact, any algorithm that saves a rep-
resentative system for the orbits of Fn

2 � Tk cannot perform in polynomial space
by the following theorem. For this reason we have to discard the group action of
flipping bits when limiting memory space to polynomial sizes.

Theorem 7. Let 1
= k ∈ N and n ∈ N. We set ϕ := =(x1, x2, . . . , xn). Then
the amount of orbits of Fn

2 � Tk is not polynomial in n.

In the previous sections we had to limit the cardinality of outputted teams
for obtaining polynomial delay. As the following theorem shows, this measure is
necessary as well when demanding polynomial space.

Theorem 8. Let Φ be any fragment of team-based propositional logic and f
be a function with f /∈ nO(1) such that for any n ∈ N there exists a formula
ϕn ∈ Φ in n variables with at least 2f(n) satisfying teams. Then it follows that
EnumTeam(Φ) cannot be enumerated in polynomial space.

Corollary 3. The problem EnumTeam(PDL−) cannot be enumerated in poly-
nomial space.

318 A. Meier and C. Reinbold

Algorithm 4. Enumerating satisfying teams in polynomial space, ordered
by cardinality
Input: A team-based propositional formula ϕ as in Equation (�)
Output: All teams T for ϕ with T |= ϕ, 1 ≤ |T | ≤ f(|ϕ|)

1 for k = 1, . . . , f(|ϕ|) do
2 T ← {sfirst};
3 while true do
4 if |T | = k and T |= ϕ then output T ;
5 s ← max(T);
6 if |T | < k and T |= ϕ and s ∈ hasNext then T ← T ∪ {next(s)} ;
7 else if s ∈ hasNext then T ← T \ {s} ∪ {next(s)} ;
8 else if —T— ¿ 1 then
9 T ← T \ {s}, s ← max(T), T ← T \ {s} ∪ {next(s)};

10 else break;

We now present an algorithm enumerating EnumTeamSize(PDL−, f) for
any f ∈ nO(1) in polynomial space. Compared to Algorithm3, it saves memory
space by recomputing the satisfying teams of lower cardinality instead of storing
them in a list. As a downside we have to accept incremental delays.

Then, we define a unary relation hasNext on 2Var(ϕ) by s ∈ hasNext if
and only if ∃t ∈ 2Var(ϕ) : s < t. For any s ∈ hasNext let next(s) be the
unambiguous assignment such that s < next(s) holds but s < t < next(s)
does not hold for any assignment t. We denote the smallest element in 2Var(ϕ)

by sfirst. The largest element is denoted by slast. As already mentioned when
defining the lexicographical order, we assume that hasNext, next and sfirst may
be determined in O(n) time.

Theorem 9. Let f ∈ nO(1) be a polynomial time computable function. Then
Algorithm4 is an IncP-algorithm for EnumTeamSize(PDL−, f) which performs
in polynomial space.

4 Conclusion

In this paper we have shown that the task of enumerating all satisfying teams of
a given propositional dependence logic formula without split junction is a hard
task when sorting the output by its cardinality, i.e., only for polynomially sized
teams, we constructed a DelayP algorithm. In the unrestricted cases, we showed
that the problem is in DelayFPT when the parameter is chosen to be the team
size. Further, we explained that the algorithm is optimal regarding its output
size and pointed out that any algorithm saving a representative system for the
orbits of Fn

2 � Tk cannot perform in polynomial space.
Furthermore, we want to point out that allowing for split junction (and

accordingly talking about full PDL) will not yield any DelayFPT or DelayP algo-
rithms in our setting unless P = NP.

Enumeration Complexity of Poor Man’s Propositional Dependence Logic 319

Lastly, we would like to mention that the algorithms enumerating orbits and
the satisfying teams, respectively, can be modified such that satisfying teams
for formulas of the form ϕ1 � ϕ2 � · · · � ϕr with r ∈ N, ϕi ∈ PDL− can be
enumerated, where � is the classical disjunction. The idea is to merge the outputs
Sol(ϕi), i ∈ {1, . . . , r}, which is possible in polynomial delay if the output for
each ϕi is pre-sorted according to a total order.

By now, we presented an algorithm that sorts the output by cardinality. It
remains open to identify the enumeration complexity of Poor Man’s Proposi-
tional Dependence Logic when other orders, e.g., the lexicographical order, are
considered. Besides, one can investigate the conjunction free fragment of PDL,
permitting the split junction operator but no conjunction operator. Similarly to
the Poor Man’s fragment, one can assume that the group action of flipping bits is
an invariant for satisfying teams when formulas are simplified properly. Nonethe-
less, the 2-coherence property is lost so that the algorithm for constructing the
sets T 0

k fails.
Finally, we want to close with some questions. Are there exact connections or

translations to concrete fragments of SQL or relational algebra (relational calcu-
lus)? Currently, propositional dependence logic can be understood as relational
algebra on a finite (and two valued) domain. Do the presented enumeration algo-
rithms mirror or even improve known algorithmic tasks in database theory? Are
there better fragments or extensions of PDL− with a broader significance for
practice?

Acknowledgements. We thank the anonymous referees for their valuable comments.

References

1. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal
independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

2. Schmidt, J.: Enumeration: algorithms and complexity. Master’s thesis, Leibniz Uni-
versität Hannover & Université de la Méditerranée Aix-Marseille II (2009). https://
www.thi.uni-hannover.de/fileadmin/forschung/arbeiten/schmidt-da.pdf

3. Strozecki, Y.: Enumeration complexity and matroid decomposition. Ph.D. thesis,
Université Paris Diderot – Paris 7 (2010). http://www.prism.uvsq.fr/∼ystr/these
strozecki

4. Carmeli, N., Kenig, B., Kimelfeld, B.: Efficiently enumerating minimal triangula-
tions. In: Sallinger, E., den Bussche, J.V., Geerts, F. (eds.) Proceedings of the
36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Sys-
tems, PODS 2017, Chicago, IL, USA, 14–19 May 2017, pp. 273–287. ACM (2017)

5. Khachiyan, L.G., Boros, E., Elbassioni, K.M., Gurvich, V., Makino, K.: On the
complexity of some enumeration problems for matroids. SIAM J. Discret. Math.
19(4), 966–984 (2005)

6. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, London (2013). https://doi.org/10.1007/978-1-4471-
5559-1

7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-
0515-9

https://www.thi.uni-hannover.de/fileadmin/forschung/arbeiten/schmidt-da.pdf
https://www.thi.uni-hannover.de/fileadmin/forschung/arbeiten/schmidt-da.pdf
http://www.prism.uvsq.fr/~ystr/these_strozecki
http://www.prism.uvsq.fr/~ystr/these_strozecki
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9

320 A. Meier and C. Reinbold

8. Creignou, N., Meier, A., Müller, J., Schmidt, J., Vollmer, H.: Paradigms for param-
eterized enumeration. Theory Comput. Syst. 60(4), 737–758 (2017)

9. Creignou, N., Ktari, R., Meier, A., Müller, J.-S., Olive, F., Vollmer, H.: Param-
eterized enumeration for modification problems. In: Dediu, A.-H., Formenti, E.,
Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 524–536.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15579-1 41

10. Väänänen, J.: Dependence Logic. Cambridge University Press, Cambridge (2007)
11. Hodges, W.: Compositional semantics for a language of imperfect information.

Logic J. IGPL 5(4), 539–563 (1997)
12. Abramsky, S., Kontinen, J., Väänänen, J.A., Vollmer, H.: Dependence logic: theory

and applications (dagstuhl seminar 13071). Dagstuhl Rep. 3(2), 45–54 (2013)
13. Fagin, R.: A normal form for relational databases that is based on domains and

keys. ACM Trans. Database Syst. 6(3), 387–415 (1981)
14. Casanova, M.A., Fagin, R., Papadimitriou, C.H.: Inclusion dependencies and their

interaction with functional dependencies. J. Comput. Syst. Sci. 28(1), 29–59 (1984)
15. Casanova, M.A., Vidal, V.M.P.: Towards a sound view integration methodology.

In: Proceedings of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems, PODS 1983, pp. 36–47. ACM, New York (1983)

16. Galliani, P.: Inclusion and exclusion dependencies in team semantics – on some
logics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012)

17. Grädel, E., Väänänen, J.A.: Dependence and independence. Stud. Logica 101(2),
399–410 (2013)

18. Hannula, M., Kontinen, J., Virtema, J.: Polyteam semantics. CoRR
abs/1704.02158 (2017)

19. Hannula, M., Kontinen, J., Virtema, J., Vollmer, H.: Complexity of propositional
logics in team semantics. CoRR, extended version of [30] abs/1504.06135 (2015)

20. Hella, L., Kuusisto, A., Meier, A., Virtema, J.: Model checking and validity in
propositional and modal inclusion logics. CoRR abs/1609.06951 (2016)

21. Ebbing, J., Lohmann, P.: Complexity of model checking for modal dependence
logic. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G.
(eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 226–237. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-27660-6 19

22. Lohmann, P., Vollmer, H.: Complexity results for modal dependence logic. Stud.
Logica 101(2), 343–366 (2013)

23. Hemaspaandra, E.: The complexity of poor man’s logic. J. Logic Comput. 11(4),
609–622 (2001)

24. Meier, A., Reinbold, C.: Enumeration complexity of poor man’s propositional
dependence logic. CoRR abs/1704.03292 (2017)

25. van Emde Boas, P.: Machine models and simulations. In: Leeuwen, J.V. (ed.) Algo-
rithms and Complexity. Handbook of Theoretical Computer Science, pp. 1–66.
Elsevier, Amsterdam (1990)

26. Durand, A., Kontinen, J., Vollmer, H.: Expressivity and complexity of dependence
logic. In: Abramsky, S., Kontinen, J., Väänänen, J., Vollmer, H. (eds.) Dependence
Logic: Theory and Applications, pp. 5–32. Birkhäuser (2016). https://doi.org/10.
1007/978-3-319-31803-5 2

27. Rotman, J.J.: An Introduction to the Theory of Groups. Graduate Texts in Mathe-
matics, vol. 148. Springer, Heidelberg (1995). https://doi.org/10.1007/978-1-4612-
4176-8

28. Kontinen, J.: Coherence and computational complexity of quantifier-free depen-
dence logic formulas. Stud. Logica 101(2), 267–291 (2013)

https://doi.org/10.1007/978-3-319-15579-1_41
https://doi.org/10.1007/978-3-642-27660-6_19
https://doi.org/10.1007/978-3-319-31803-5_2
https://doi.org/10.1007/978-3-319-31803-5_2
https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.1007/978-1-4612-4176-8

Enumeration Complexity of Poor Man’s Propositional Dependence Logic 321

29. Knuth, D.: The Art of Computer Programming, Volume 3: Sorting and Searching,
2nd edn. Addison-Wesley, Boston (1998)

30. Hannula, M., Kontinen, J., Virtema, J., Vollmer, H.: Complexity of propositional
independence and inclusion logic. In: Italiano, G.F., Pighizzini, G., Sannella, D.T.
(eds.) MFCS 2015. LNCS, vol. 9234, pp. 269–280. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48057-1 21

https://doi.org/10.1007/978-3-662-48057-1_21

Refining Semantic Matching for Job
Recruitment: An Application of Formal

Concept Analysis

Gábor Rácz, Attila Sali(B), and Klaus-Dieter Schewe

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences,
Budapest P.O.B.127, 1364, Hungary

gabee33@gmail.com, sali.attila@renyi.mta.hu, kd.schewe@acm.org

Abstract. A profile describes a set of skills a person may have or a set
of skills required for a particular job. Profile matching aims to determine
how well the given profile fits the requested profile. Skills are organized
into ontologies that form a lattice by the specialization relation. Match-
ing functions were defined based on filters of the lattice generated by the
profiles. In the present paper the ontology lattice is extended by addi-
tional information in form of so called extra edges that represent some
kind of quantifiable relationship between skills. This allows refinement
of profile matching based on these relations between skills. However,
that may introduce directed cycles and lattice structure is lost. We show
a construction of weighted directed acyclic graphs that gets rid of the
cycles, and then present a way to use formal concept analysis to gain
back the lattice structure and the ability to apply filters. We also give
sharp estimates how the sizes of the original ontology lattice and our
new constructions relate.

1 Introduction

A profile describes a set of properties and profile matching is concerned with
the problem to determine how well a given profile fits to a requested one. Profile
matching appears in many application areas such as matching applicants for job
requirements, matching buyers’ requirements with goods advertised such as used
cars, etc.

An early idea of profile matching was considering profiles as sets of unrelated
items. Then one tries to measure the similarity or distance of sets. Several ways
of definition of distances of sets were introduced, such as Jaccard or Sørensen-
Dice measures [13] turned out to be useful in ecological applications. However,
skills or properties included in profiles are usually not totally unrelated items,
implications or dependencies exist between them and need to be taken into

The research of the first author of this paper has been partly supported by the
Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry
of Science, Research and Economy, and the Province of Upper Austria in the frame
of the COMET center SCCH.

c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 322–339, 2018.
https://doi.org/10.1007/978-3-319-90050-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_18&domain=pdf

Semantic Matching and Formal Concept Analysis 323

account. For example, in the human resources area several taxonomies for skills,
competences and education such us DISCO [1], ISCED [2] and ISCO [3] have
been set up. These taxonomies organize the individual properties into a lattice
structure. Popov and Jebelean [18] proposed defining an asymmetric matching
measure on the basis of filters in such lattices.

Besides the subsumption relations of the ontology lattice other “horizontal”
relations between skills exist. The existence of some skills imply that the appli-
cant may have some other skills with certain probabilities, or of some (not com-
plete) proficiency level. For example, we may reasonably assume that knowledge
of Java implies knowledge of NetBeans up to a grade of 0.7 or with probability
0.7. This kind of interdependencies were exploited in [19]. The idea is that a job
application is considered better than another one for a given offer profile even if
they match equally using filter methods, if the first one has more skills implied
in the “fractional” way that match the offer, than the second application has.
In this way we get a refinement of the matching hierarchy given by previous
methods.

The subsumption hierarchy of the ontology of skills was considered as a
directed graph with edge weights 1. A lattice filter generated by a profile corre-
sponded to the set of nodes reachable from the profile’s nodes in the directed
graph. Then extra edges were added with weights representing the probabil-
ity/grade of the implication between skills or properties. This introduced the
possibility of directed cycles. Filters of application profiles are replaced by nodes
reachable in the extended graph from the profile’s nodes. For each vertex x
reached a probability/grade was assigned, the largest probability/weight of a
path from the profile’s nodes to x. Path probability/weight was defined as the
product of probabilities of edges of the path. This process resulted in a set of
nodes, which we call derived skills, with grades between zero and one, so it was
natural interpreting it as a fuzzy set. It was proved that it’s a fuzzy filter as
defined in [11,14].

In the present paper we provide a construction that gets rid of directed
cycles caused by the extra edges. In doing so we show that all matching results
that can be obtained by exploiting extra edges can also be obtained from an
extended lattice without such extra edges. That is, the theory of profile match-
ing remains within the filter-based approach that we developed in [17], which
underlines the power and universality of this theory. In particular, we empha-
sised how to obtain the lattices underlying the matching theory from knowledge
bases that define concepts used in job and candidate profiles. These knowledge
bases are grounded in description logics, so the lattice extensions provide also
feedback for fine-tuning the knowledge representation, whereas weighted extra-
edges are not supported in the knowledge bases. Furthermore, we also showed in
[17] that under mild plausibility constraints on human-defined matchings appro-
priate weights can be defined such that the filter-based matchings preserve the
human-defined rankings, which further enables linear optimization to synchro-
nize matchings with human expertise.

324 G. Rácz et al.

The extension is done by extending the ontology lattice by new nodes and
weighting of the nodes. The result is a directed acyclic graph, whose structure
reflects the different possible path lengths between nodes of the ontology lattice.
A directed acyclic graph naturally represents a poset, however that is not a
lattice in general. In order to gain back the lattice structure formal concept
analysis is used.

While extension of applications by skills derived using extra edges is natural,
as employers may benefit from these skills, it is not so clear whether the offer
profiles should be extended. On one hand, profiles should be handled uniformly,
since a profile could represent both, application, as well as offer. On the other
hand, if offers are also extended with derived skills, then it may happen that an
application scores high match by having only these derived skills, not the ones
in the original offer. This situation may not be so advantageous. In the present
paper we discuss both scenarios, the latter one is treated by applying different
weighting functions for applications and offers.

The paper is organized as follows. Section 2 introduces the basic concepts and
definitions, furthermore the matching functions studied. Section 3 deals with the
construction of directed extension graph and formal concept lattice. We also
give node weightings that preserve the weights of fuzzy filters assuming that
offers are also extended with derived skills. Section 4 discusses related extremal
problems, that is how the sizes of the constructed structures relate to the size
of the original ontology lattice. We show that our obtained bounds are sharp.
Section 5 contains the analysis when offers are not extended by derived skills,
just by those that are reachable via lattice (ontology) edges. In order to preserve
the weights of fuzzy filters we have to give different node weights for offers from
the weights of applications. Section 6 surveys related results, while Sect. 7 is a
summary.

2 Semantic Matching

Semantic matching has various application areas from dating applications to on-
line product searching tools. We approach the problem from the field of human
resources, namely we search for the best fitting application for a given job.

Formally, let S = {s1, . . . , sn} be a set of skills. A job offer O = {o1, . . . , ok} is
a subset of S that contains the skills that are required for the job. An application
A = {a1, . . . , al} is also a subset of S that represents skills of the applicant.
Our task is to find the most suitable applicant for a given job. Let match :
P(S) × P(S) → [0, 1] be a matching function that determines how well an
application fits to a job offer. If we know the matching function, then finding
the most suitable applicant is a maximum search over the matching values.

Let � be a specialization relation over the skills such that for all s, s′ ∈ S :
s � s′ iff s is a specialization of s′ or s′ is more general skill than s. This relation
is reflexive, antisymmetric and transitive, so it defines a partial order, a hierarchy
over elements of S. Let us suppose that L = (S,�) is an ontology lattice, i.e. for
each pair of skills has infimum (greatest lower bound) and supremum (least upper

Semantic Matching and Formal Concept Analysis 325

bound). Note, that we can always add a top (respectively a bottom) element to
the skills that everybody (nobody) possesses.

We can extend the lattice with additional information in form of so called
extra edges that represent some kind of quantifiable relationship between skills.
However, these edges can form cycles in the hierarchy therefore we use directed
graphs to handle them instead of the lattice structure [19].

Let G = (V,E) be a directed graph where V = S and E = Elat ∪ Eext

is a set of lattice edges and extra edges such that for two nodes vi, vj ∈ V :
(vi, vj) ∈ Elat iff vi � vj and (vi, vj) ∈ Eext iff there is an extra edge between
vi and vj . Let wedge : E → [0, 1] be an edge weighting function such that for all
elat ∈ Elat : wedge(elat) = 1 and for all eext ∈ Eext : wedge(eext) ∈ (0, 1) that
represents the strength of the relationship between start and end node of the
edge. Let pF (x, v) denote the set of directed paths from node x to node v using
edges of a subset F ⊆ E of edge set E of G.

We can define a matching function of an application A to an offer O using
the graph in the following way. First, we define function ext to extend the
application and the offer with all the skills that are available from them via
directed path in G. For an arbitrary set of skills X ⊆ S and a subset F ⊆ E
of edges, let extF (X) = {(v, γv) | v ∈ V and ∃x ∈ X : |pF (x, v)| ≥ 1 and γv =
maxx′∈X,p∈pF (x′,v)length(p)} where length of a path p = (v1, . . . , vn) is the
product of the edge weights on p, i.e. length(p) =

∏n−1
i=1 wedge((vi, vi+1)).

It was shown that the extended sets are fuzzy filters [14] in L = (S,�), i.e.
for a set of skills X and for all t ∈ [0, 1] : extE(X)t = {x ∈ X | γx ≥ t} is filter
in L.

It perfectly makes sense to use lattice edges to extend applications and offers
as lattice edges describe specialization relation between skills. Namely if an appli-
cant possesses a special skill then he or she must possess the more general skills as
well. However extra edges are used in the extension as well to get more selective
matching functions that help differentiate applications.

Let us call nodes in extE(X) \ extElat
(X) derived nodes for a set X ⊆ S

of skills. We investigate two approaches or philosophies when extending profiles
using the extra edges. The first one is symmetric, that is the case when offers
and applications are treated in the same way. In this case we use extension func-
tion extE for both, offers O and applications A. The advantage is that we only
have to apply one weighting function and the proof of equivalence of different
representations is simpler than that of the other case. There is a disadvantage,
though. If offers are also extended with derived skills, then an application may
obtain high matching value just having those skills. However, it is not really
advantageous for an employer, as required skills are not in the application.

The second approach called the strict approach is when offers are only
extended with non-derived nodes, that is extE is used for applications but extElat

is used for offers. This is the approach of [19]. The disadvantage of this case is
that different weighting functions have to be applied for applications and offers,
consequently the proofs of equivalences are more complicated. However, the point
of view of employers is better represented in the second way. An application has

326 G. Rácz et al.

to have good matching in target skills to score high, and the derived skills can
be used to rank applications scoring equally otherwise. Note, that extElat

(X)
is exactly the set of nodes contained in the lattice filter generated by X in the
ontology lattice (S,�).

We adapted the profile matching function proposed by Popov and Jebelean
et al. [18] to fuzzy sets in [19]. We use the same function here except the different
approaches in extension of offers. So, let the matching value of A to O be

matchsym(A,O) =
||extE(A) ∩ extE(O)||

||extE(O)|| (1)

in case of the symmetric approach, and

match(A,O) =
||extE(A) ∩ extElat

(O)||
||extElat

(O)|| (2)

in case of the strict approach. For two fuzzy sets f, g of S and for a skill s ∈ S
let (f ∩ g)(s) := min{f(s), g(s)}, and ||f || :=

∑
(v,γv)∈f γv, i.e. || · || denotes

sigma cardinality and intersection is defined as the min t-norm. Note, that other
cardinality and intersection functions can be applied in the same way [11,23].

Let wnode : V → [0, 1] be a node weighting function that assigns 1 to every
nodes and let wfset : FS → [0, 1] be a weighting function for fuzzy sets such that
for a fuzzy set f let wfset(f) =

∑
(v,γv)∈f γv =

∑
(v,γv)∈f γv · wnode(v) where FS

denotes all fuzzy sets of S. Note, that wnode is defined only to unify the notations
in the rest of the paper. With this weighting functions, the matching value of A
to O can be given as

matchsym(A,O) =
wfset(extE(A) ∩ extE(O))

wfset(extE(O))
(3)

and

match(A,O) =
wfset(extE(A) ∩ extElat

(O))
wfset(extElat

(O))
, (4)

respectively.

3 Lattice Enlargement

In this section, we present a graph transformation method to eliminate extra
edges from extended lattices preserving symmetric matching values of appli-
cations to offers, and then we use formal concept analysis to restore lattice
properties in the transformed graphs.

3.1 Extension Graph

Let G = (V,E) be a directed graph with wedge, wnode weighting functions as
defined above and cij be the weight of the longest path from vi to vj where

Semantic Matching and Formal Concept Analysis 327

vi, vj ∈ V are two nodes. Let vi1j , . . . vikj be the nodes from where vj is available
via directed path such that ci1j ≤ · · · ≤ cikj . Let cj1 , . . . , cjl denote the different
values among ci1j , . . . , cikj , i.e. cj1 < · · · < cjl .

For all cj1 . . . cjl , add new nodes Vj = {vj1 , . . . , vjl
} (for simplicity let vjl

=
vj) to V and add new lattice edges from vjl

to vjl−1 , . . . , from vj2 to vj1 , and
from vj1 to the top to E. The new edges forms a directed path from vj to the top.
Let qj = (vjl

, . . . , vj1 , top) denote that path. Assign weight wjk
= cjk − cjk−1 to

vjk
(k = 1, . . . , l) where cj0 = 0. Note, that

∑l
k=1 wjk

= 1 as it is a telescoping
sum. If the length of the longest path from vi to vj was cjk , then add a new
lattice edge from vi to vjk

. Finally, remove all extra edges from the graph. Let
G′ = ext(L, Eext) = (V ′, E′) denote the modified graph, called extension graph,
and w′

node denote the modified node weighting function.
New nodes of Vj and new edges of qj can be considered as an extension of

vj to a chain because there do not start edges from intermediate nodes to other
chains so out-degrees of intermediate nodes are always one. We call vj the base
node of the chain. Base nodes of such chains are nodes of L, and G as well.

Let qj and qk be two chains with base nodes vj and vk, respectively. Then,
an edge from qj to qk in G′ can go

– from vj to vk and then it represents a directed path in G from vj to vk

containing lattice edges only;
– from vj to an intermediate node vi of qk and then it represents a directed

path pvjvk
of G from vj to vk such that length(pvjvk

) =
∑i

s=1 w′
node(vs) if

qk = (vkl
, . . . , vs+1, vs, vs−1, . . . , v1, top).

Note, that lattice edges in G are acyclic so the corresponding edges in G′ are
acyclic as well, and newly added edges start from base nodes of chains only. So
G′ is an acyclic graph.

Figure 1 shows an example of the construction of G′. There is the original
graph, called G, on the left. Blue (solid) edges represent lattice edges and orange
(dashed) edges with numbers on them represent extra edges and their weights.
There is the extension graph, called G′, on the right where green edges represent
the newly added edges, and numbers in the top right corners of nodes are weights
of the nodes.

As it can be seen, for example, node A of G has been transformed into the
chain qA = (A,A1, T op) since A is available via lattice edges (i.e. via maxi-
mum length paths) from B,C,Bottom and it is available from D via the path
pDA = (D,C,A) whose length is 0.8 and A is not available from any other nodes.
Therefore A1 got the weight 0.8 and A got the weight 0.2.

Lemma 3.1. Let G = (V,E) be a directed graph extending the lattice L = (S,�)
with extra edges, wfset be the fuzzy set weighting function, G′ = ext(L, Eext) =
(V ′, E′) be the extension graph, and w′

fset be the modified weighting function.
Let O ⊆ S be an offer and A ⊆ S be an application. Then,

328 G. Rácz et al.

Fig. 1. Lattice with extra edges and the generated extension graph (Color figure online)

matchsym(A,O) =
wfset(extE(A) ∩ extE(O))

wfset(extE(O))
=

w′
fset(extE′(A) ∩ extE′(O))

w′
fset(extE′(O))

.

(5)

Proof. Let u ∈ G′ and let qz = (zl, . . . , z1, top) be the node chain with base node
z ∈ G that contains u, i.e. zl = z and u = zi for some i ∈ [1..l]. First, we will
show for an arbitrary X ⊆ S that u ∈ extE′(X) iff z ∈ extE(X).

If u ∈ extE′(X), then there is a node a ∈ X ⊆ V ′ and a directed path qau =
(x1, . . . , xi, xi+1, . . . xn) from a to u in G′ where x1 = a and xn = u. If a = z then
z ∈ extE(X). Otherwise let xi+1 be the first node of qau that is an intermediate
node of qz as well. Such node must exist because edges between chains can
start from base nodes only and we cannot reach u from a otherwise. Then for
j ∈ [1..i]: xj , xj+1 are nodes of G, and (xj , xj+1) edges of qau represent directed
paths containing lattice edges only in G. Therefore there is a paz = (x1, . . . , xi, z)
path in G from a = x1 to z such that length(paz) =

∑k
s=1 w′

node(zs). It means
z ∈ extE(X) in this case as well.

On the other hand, if z ∈ extE(X) with grade γz, then there is a node b ∈ X
and a maximal length path pbz from b to z in G such that length(pbz) = γz.
In that case, there is an edge from b to zr in G′ for some r ∈ [1..l] such that∑r

s=1 w′
node(zr) = length(pbv) and zr, zr−1, z1 ∈ extE′(X).

Consequently, extE′(A) ∩ extE′(O) contains fragments of chains generated
from base nodes that are available from both A and O in G. Sum of node
weights in a fragment equals to the minimum of the lengths of the maximal
length paths starting from A or O ending in the base node of the chain. Thus,
wfset(extE(A) ∩ extE(O)) = w′

fset(extE′(A) ∩ extE′(O)) and wfset(extE(O)) =
w′

fset(extE′(O)), i.e. Eq. (5) holds. ��

Semantic Matching and Formal Concept Analysis 329

Note, that G′ is acyclic by its construction but does not necessarily define a
lattice. Therefore, we build a concept lattice from G′ in which matching values
of applications to offers will also be preserved.

3.2 Concept Lattice

First, we define a formal context and formal concepts based on G′. Let
(V ′

1 , V ′
2 , T ′) be a formal context, where V ′

1 = V ′
2 = V ′ and (vi, vj) ∈ T ′ iff vj

is available from vi via directed path supposing that the relation is reflexive.
Consider the element of V ′

1 as start points and the element of V ′
2 as end points

of directed paths in G′. Let I ⊆ V ′
1 and J ⊆ V ′

2 and let us define their dual sets
IDs and JDe as follows:

IDs = {b ∈ V ′
2 | (a, b) ∈ T ′ for all a ∈ I}

JDe = {a ∈ V ′
1 | (a, b) ∈ T ′ for all b ∈ J}

A concept of the context (V ′
1 , V ′

2 , T ′) is a pair 〈I, J〉 such that I ⊆ V ′
1 , J ⊆ V ′

2

and IDs = J , JDe = I. I is called an extent of 〈I, J〉, and J is called an intent
of 〈I, J〉.

Table 1. Formal context (V ′
1 , V

′
2 , T

′)

Bot B C C1 C2 D D1 D2 A A1 Top

Bot X X X X X X X X X X X

B X X X X X X

C X X X X X X X X

C1 X X

C2 X X X

D X X X X X X X

D1 X X

D2 X X X

A X X X

A1 X X

Top X

Table 1 shows the formal context (V ′
1 , V

′
2 , T ′) that was generated based on

graph G′ of Fig. 1. Labels of rows and columns represent the elements of V ′
1 and

the elements of V ′
2 , respectively. There is an X in row i column j if (i, j) ∈ T ′,

i.e. j is available from i via directed path in G′.

Lemma 3.2. If G′ is an acyclic graph, then

(1) For every concept 〈I, J〉 of the context (V ′
1 , V ′

2 , T ′): I ∩ J = {v} for some
v ∈ V ′ or I ∩ J = ∅

(2) For every v ∈ V ′: there is a concept 〈Iv, Jv〉 in the context (V ′
1 , V ′

2 , T ′) such
that Iv ∩ Jv = {v}.

330 G. Rácz et al.

Proof.

(1) Indirectly, suppose that for a concept 〈I, J〉 of (V ′
1 , V ′

2 , T ′) and for two dif-
ferent nodes u, v ∈ V ′: u, v ∈ (I ∩ J) holds. In this case (u, v) ∈ T ′ and
(v, u) ∈ T ′ hold as well. It would mean that there is a cycle in G′ which is
a contradiction as G′ is acyclic.

(2) For a node v ∈ V ′ let Jv = {v}Ds be the set of all nodes that are available
from v via directed path (including v itself). Let Iv = JDe

v , then v ∈ Iv. If
Iv = {v}, then 〈Iv, Jv〉 is the concept we are looking for.
Otherwise, suppose that for a node u such that u �= v: u ∈ Iv = JDe

v =
({v}Ds)De . That means (u, v) ∈ T ′, i.e. v is available from u. As T ′ is a transi-
tive relation {v}Ds ⊆ {u, v}Ds . However {u, v}Ds ⊆ {v}Ds because {u, v}Ds

cannot contain such node that is not available from all nodes of {u, v}. Fol-
lowing this construction we can get that if JDe

v = Iv = {u1, . . . , ui, v}, then
IDs
v = {u1, . . . , ui, v}Ds = {v}Ds = Jv. Therefore 〈{u1, . . . , ui, v}, {v}Ds〉 is

a concept such that {u1, . . . , ui, v} ∩ {v}Ds = {v}. ��
Let B(V ′

1 , V ′
2 , T ′) be the set of all formal concepts in the context, and ≤ be

a subconcept-superconcept order over the concepts such that for any 〈A1, B1〉,
〈A2, B2〉 ∈ B(V ′

1 , V
′
2 , T ′) : 〈A1, B1〉 ≤ 〈A2, B2〉, iff A1 ⊆ A2 (or, iff B2 ⊆ B1).

(B(V ′
1 , V ′

2 , T ′),≤) is called concept lattice [10] and let cl((L, Eext)) denote the
concept lattice obtained from the extension graph ext(L, Eext).

Figure 21 shows concept lattice of the context (V ′
1 , V ′

2 , T ′) from Table 1.
Concepts 〈Iv, Jv〉 where Iv ∩ Jv = {v} are labeled with v. For example,
〈IC2 , JC2〉 = 〈{Bot, C,C2,D}, {C2, C1, T op}〉. But, concepts 〈I, J〉 such that
I ∩ J = ∅ are unlabeled like the 〈{Bot,B,C}, {A,A1, C1,D1, T op}〉 parent of
concepts B and C. Another, larger example is the ontology on Fig. 3 with added
extra edges from [19].

It is worth mentioning that the concept lattice cl((L, Eext)) generated from
ontology L endowed with extra edges Eext coincides with the Dedekind-McNeille
completion [8] of the poset obtained as transitive closure of acyclic directed graph
ext(L, Eext). Indeed, the collection of upper bounds of a subset S of elements of
the poset is exactly the collection of the vertices reachable from the vertices of S
via directed paths in the directed graph. We use the concept lattice formulation
for two reasons. First, a direct construction is obtained skipping the step of
constructing the poset from the directed graph ext(L, Eext). Second, the concept
lattice structure allows us to define node weights properly.

An offer O = {o1, . . . , ok} ⊆ S = V ⊆ V ′ generates a filter FO ⊆ B(V ′
1 , V

′
2 , T ′)

in the concept lattice such that FO = {〈I, J〉 | ∃〈Io, Jo〉 ≤ 〈I, J〉 such that Io ∩
Jo = {o} for some o ∈ O}. Similarly, an application A generates a filter FA in
the concept lattice.

1 The concept lattices were generated using the Concept Explorer tool. Web page:
http://conexp.sourceforge.net/.

http://conexp.sourceforge.net/

Semantic Matching and Formal Concept Analysis 331

Fig. 2. Concept lattice of context (V ′
1 , V

′
2 , T

′)

Let wcon : B(V ′
1 , V

′
2 , T ′) → [0, 1] be a concept weighting function such that

for a concept 〈I, J〉 of B(V ′
1 , V

′
2 , T ′):

wcon(〈I, J〉) =
{

w′
node(v) if I ∩ J = {v} for some v ∈ V ′,

0 otherwise.

Let wfil be a filter weighting function such that for a filter F ∈ P(B(V ′
1 , V ′

2 , T ′)):
wfil(F) =

∑
〈I,J〉∈F wcon(〈I, J〉).

Theorem 3.1. Let G = (V,E) be a directed graph extending the lattice L =
(S,�) with extra edges and cl((L, Eext)) = (B(V ′

1 , V ′
2 , T ′),≤) be the concept lat-

tice constructed from G and wfil be the filter weighting function. Let O ⊆ S be
an offer and A ⊆ S be an application. Then,

matchsym(A,O) =
wfil(FA ∩ FO)

wfil(FO)
. (6)

Proof. Based on Lemma 3.1 it is enough to prove that

wfil(FA ∩ FO)
wfil(FO)

=
w′

fset(extE′(A) ∩ extE′(O))
w′

fset(extE′(O))
(7)

Let 〈Iu, Ju〉 and 〈Iv, Jv〉 be two concepts such that Iu∩Ju = {u} and Iv∩Jv =
{v} where u, v ∈ V ′, i.e. u and v are nodes of G′ that is generated from G as
defined above. First, we will show that 〈Iu, Ju〉 ≤ 〈Iv, Jv〉 iff there is a directed
path from u to v in G′.

If 〈Iu, Ju〉 ≤ 〈Iv, Jv〉, then Jv ⊆ Ju. But u ∈ Iu and v ∈ Jv ⊆ Ju, and
therefore (u, v) ∈ T ′, i.e. there is a directed path from u to v in G′. On the other

332 G. Rácz et al.

Fig. 3. Ontology with extra edges and the corresponding concept lattice

hand, if there is a directed path from u to v in G′, then (u, v) ∈ T ′ therefore
v ∈ Ju = {x | (u, x) ∈ T ′}. However if v is available from u, then all nodes
that are available from v, i.e. elements of Jv are also available from u as T ′ is
a transitive relation. So Jv ⊆ Ju, but then 〈Iu, Ju〉 ≤ 〈Iv, Jv〉. It means that if
v ∈ extE′(O), then 〈Iv, Jv〉 ∈ FO and if 〈Iu, Ju〉 ∈ FO, then u ∈ extE′(O) and
the same holds for extE′(A) and FA.

Since wcon assigns the same weights to concepts of FA and FO in form of
〈Iv, Jv〉 where v ∈ V ′ as w′

node assigns to v and wcon assigns 0 to any other
concepts therefore wfil sums up the same values as w′

fset, so Eq. (7) holds. ��

Semantic Matching and Formal Concept Analysis 333

4 Extremal Problems

It is a natural question how the size of the original ontology lattice L = (S,�)
relates to the sizes of the extension graph ext(L, Eext) and the concept lattice
cl((L, Eext)) obtained from ext((L, Eext)). First, let us consider ext(L, Eext).

Proposition 4.1. Let L = (S,�) be an ontology lattice of n + 2 nodes. Then for
G′ = ext(L, Eext) = (V ′, E′) we have |V ′| ≤ n2 + 2. Furthermore, this estimate
is sharp, that is for every positive integer n there exists ontology Ln = (Sn,�)
and set of extra edges Eext such that ext(Ln, Eext) has n2 + 2 vertices.

Proof. Let the nodes of L = (S,�) be v0, v1, . . . , vn, vn+1 with v0 = bottom and
vn+1 = top. Then clearly there is no directed path from vi i > 0 to v0 in L∪Eext,
and the maximum weight path from any node vi i > 0 to vn+1 is of weight 1,
so no new nodes are generated from top and bottom. For vj 0 < j < n + 1
there can be at most n distinct cj1 , . . . , cjl values (l ≤ n) that there exists a
maximum weight path to vj of weight cjm , as these paths could come from
nodes vi i ∈ {0, 1, . . . , n} \ {j} only.

On the other hand, let Lc = (S,�) be defined as v1, . . . , vn be pairwise
incomparable elements, furthermore let Ec

ext = {(vi, vi+1) : i = 1, 2, . . . n} where
i + 1 is meant modulo n. Let the weight of each extra edge in Ec

ext be a fixed
0 < p < 1 value. Lc ∪ Ec

ext is shown on Fig. 4. The maximum weight path from
vi to vj has weight pj−i if 1 ≤ i < j ≤ n, while the weight is pn−1−(j−i) if
1 ≤ j < i ≤ n, finally the weight is 1 for i = 0 < j ≤ n. Thus, each node
vj 1 ≤ j ≤ n has exactly n different maximum weight path going into it, so
ext(Lc, E

c
ext) has exactly n2 + 2 nodes. ��

Our next goal is to bound the size of concept lattice cl((L, Eext)). The main
question is how many “dummy” vertices are generated, that is concepts 〈I, J〉
such that I ∩ J = ∅.

Fig. 4. Extremal example

334 G. Rácz et al.

Theorem 4.1. Let L = (S,�) be an ontology lattice of n + 2 nodes. Then for
a set Eext of extra edges |cl((L, Eext))| ≤ 2n + n2 − n + 1 and this estimate is
sharp, that is there exist Ln = (Sn,�) and and set of extra edges Eext such that
|cl((Ln, Eext))| = 2n + n2 − n + 1.

Proof. It is enough to prove that the number of concepts 〈I, J〉 such that I ∩J =
∅ is at most 2n − n − 1 to establish the upper bound by Lemma3.2 and by
Proposition 4.1. Indeed, Lemma 3.2 tells us that there is a concept corresponding
to each element of ext(Lc, E

c
ext) and the other concepts 〈I, J〉 of cl((L, Eext))

have the property I ∩ J = ∅.
Let vji

be a vertex of ext(Lc, E
c
ext) such that vji

is in the chain with base
node vj and vji

�= vj furthermore assume that i is maximal with respect to
vji

∈ I for some set of nodes of ext(Lc, E
c
ext). The nodes reachable from vji

via
directed paths are {vji

, vji−1 , . . . , vj1 , T op}, thus IDs ⊆ {vji
, vji−1 , . . . , vj1 , T op}.

This implies that (IDs)De ⊇ {vji
, vji−1 , . . . , vj1 , T op}De � vj . However, vj �∈ I

by the maximality of i, so (IDs)De �= I, that is I cannot be the extent of a
concept of cl((L, Eext)). Suppose now that 〈I, J〉 is a concept and vji

∈ I as
well as vke

∈ I for some j �= k so that neither vji
nor vke

is the base node of its
chain. Then IDs ⊆ {vji

, vji−1 , . . . , v1, T op} ∩ {vke
, vke−1 , . . . , vk1 , T op} = {Top},

so I = {Top}De = S, that is 〈I, J〉 = 〈ITop, JTop〉, i.e., I ∩ J = {Top}. So we
may assume that if 〈I, J〉 is a concept and vji

∈ I for some non-base node of
a chain of ext(Lc, E

c
ext), then I does not contain non-base element of any other

chain. Let i be minimal such that vji
∈ I, where vj0 is understood to be Top.

We claim that (IDs) = {vji
, vji−1 , . . . , vj1 , T op}. Indeed, we have J = IDs and

I = JDe . Let � be maximal so that vj�
∈ J , then J = {vj�

, vj�−1, . . . vj1 , T op},
since if there is a directed path from a node x to vj�

, then there is a path to any
vjt

for � > t, as well. Also, if J = {vj�
, vj�−1, . . . vj1 , T op}, then for any node x,

there is a directed path from x to every node in J iff there is a directed path
from x to vj�

, since J itself forms a directed path from vj�
to Top. Now, by

I = JDe we have that vji
= vj�

and 〈I, J〉 = 〈Iji
, Jji

〉.
From this we can conclude that if 〈I, J〉 is a concept such that I ∩ J = ∅,

then I ⊂ S \ {Bottom, Top} and |I| ≥ 2. The number of possible subsets I is
the number of at least 2 element subsets of an n-element set, which is exactly
2n − n − 1.

To prove that the bound is sharp, consider again the extremal example Lc ∪
Ec

ext shown on Fig. 4. We have to show that for any subset I of size at least 2
of {v1, . . . , vn}, 〈I, IDs〉 is a concept, that is I = (IDs)De . Clearly, I ⊆ (IDs)De .
Let ij be defined as ij = max{i : vji

∈ IDs}, that is vjji
is the lowest element of

the jth chain that is contained in IDs . Let 1 ≤ j1 < j2 < . . . < jt ≤ n be such
that I = {j1, j2, . . . , jt}. Then it is easy to see that n− ij = min{jk − j : jk > j}
if j < jt, otherwise n − ij = j1 + n − j, that is n − ij is the distance of j from
the cyclically next jk ∈ I. Let j0 �∈ I and let j′ be the element of {1, 2, . . . , n}
cyclically just before j0. Then ij′ > 1, while the only element of the j′th chain
that is an endvertex of a directed path from vj0 is vj′

1
, so vj0 �∈ (IDs)De . ��

Another interesting question could be how the average or expected size of exten-
sion graph and the concept lattice relates to the size of the original ontology

Semantic Matching and Formal Concept Analysis 335

lattice. This is the topic of further investigations. The first task is finding a
reasonable probability distribution for the extra edges.

5 Strict Approach

As it was mentioned above, extra edges can be used based on different philoso-
phies when extending offers. In this section, we show that strict matching values
of applications to offers can also be preserved in the extension graph and in the
concept lattice.

5.1 Preserving Strict Matching in Extension Graph

The main problem of preserving strict matching values in the extension graph
is if extra edges are used to extend the offer, then extra nodes might appear
in the extended offer whose weights are greater then 0. However, to address
this problem, special node weighting functions can be defined depending on the
offers.

For an offer O let wO
node be a node weighting function that preserves the

weights of the nodes that are available from O via lattice edges in G, and the
nodes that were generated from such nodes in G′, and it assigns 0 to the other
nodes, i.e. for a node v ∈ V ′ let

wO
node(v) =

{
w′

node(v) if ∃vj ∈ extElat
(O) : v ∈ Vj ,

0 otherwise.

Let wO
fset be a fuzzy set weighting function that uses wO

node, so for a fuzzy
set f let wO

fset(f) =
∑

(v,γv)∈f γv · wO
node(v). Note, that computing wO

node is a
preprocessing step that has to be done once for all offers, and then wO

node can be
reused to calculate matching values of applications to the given offer.

With these weighting function a similar result can be shown as in Lemma3.1.

Lemma 5.1. Let G = (V,E) be a directed graph extending the lattice L = (S,�)
with extra edges, wfset be the fuzzy set weighting function, G′ = ext(L, Eext) =
(V ′, E′) be the extension graph, and w′

fset be the modified weighting function. Let
O ⊆ S be an offer with wO

node and wO
fset node and fuzzy set weighting functions,

respectively and let A ⊆ S be an application. Then,

match(A,O) =
wfset(extE(A) ∩ extElat

(O))
wfset(extElat

(O))
=

wO
fset(extE′(A) ∩ extE′(O))

wO
fset(extE′(O))

(8)

Proof. The proof is analogous to Lemma3.1’s. However, extE′(A) ∩ extE′(O)
may contain chain fragment (vyk

, . . . , vy1) of a chain qy = {vyl
, . . . , vy1 , top}

with base node vy where vy is only available from O via extra edges in G, i.e.

336 G. Rácz et al.

vy ∈ extE(O)\extElat
(O). But wO

node assigns 0 to such vyk
, . . . , vy1 nodes by def-

inition. In addition, G′ contains lattice edges only, so extE′(A) and extE′(O) are
crisps sets, so grades of their elements are always 1. Therefore wO

fset(extE′(A) ∩
extE′(O)) =

∑
u∈extE′ (A)∩extE′ (O) wO

node(u) = wfset(extE(A) ∩ extElat
(O)) and

analogously, wfset(extElat
(O)) = wO

fset(extE′(O)). Thus Eq. (8) holds as well. ��

5.2 Preserving String Matching in Concept Lattice

The same issue appears if we want to preserve strict matching values of appli-
cations to offers in the concept lattice as we solved in case of the extension
graph, namely extended offer might contain new nodes with weight greater than
0. However, the offer specific weighting functions solve this issue as well.

We extend wO
node to be able to use it for concepts. So, let wO

con be a concept
weighting function generated by an offer O such that for a concept 〈I, J〉:

wO
con(〈I, J〉) =

{
wcon(〈I, J〉) if I ∩ J = {v} such that ∃vj ∈ extElat

(O) : v ∈ Vj ,
0 otherwise.

Let wO
fil be the filter weighting function based on wO

con, i.e. for a filter F ∈
P(B(V ′

1 , V ′
2 , T ′)): wO

fil(F) =
∑

〈I,J〉∈F wO
con(〈I, J〉).

With these weighting functions, we can prove the following theorem similarly
to Theorem 3.1.

Theorem 5.1. Let G = (V,E) be a directed graph extending the lattice L =
(S,�) with extra edges and cl((L, Eext)) = (B(V ′

1 , V ′
2 , T ′),≤) be the concept lat-

tice constructed from G and wfil be the filter weighting function. Let O ⊆ S be
an offer with wO

con and wO
fil concept and filter weighting functions, respectively

and let A ⊆ S be an application. Then,

match(A,O) =
wO

fil(FA ∩ FO)
wO

fil(FO)
(9)

Proof. Analogously to Theorem 3.1’s proof and based on Lemma 3.1 it is enough
to prove that

wO
fil(FA ∩ FO)
wO

fil(FO)
=

wO
fset(extE′(A) ∩ extE′(O))

wO
fset(extE′(O))

. (10)

However, FA and FO contain concepts for all nodes of extE′(A) and extE′(O)
respectively. But wO

con assigns 0 to such 〈Iv, Jv〉 concepts where v ∈ V ′ is not
contained in any chain whose base was available from O in G using lattice edges
only. Therefore wO

fil sums up the same values as wO
fset, i.e. Eq. (10) holds as

well. ��

Semantic Matching and Formal Concept Analysis 337

6 Related Work

The aim of profile matching is to find the most fitting candidates to given profiles.
Due to its various applications areas, it has become a widely investigated topic
recently. Profiles can be represented as sets of elements and then numerous
set similarity measures [5], such as Jaccard or Sørensen-Dice, are applicable to
compute matching values.

There exist methods assuming that elements of profiles are organized into
a hierarchy or ontology. For example, Lau and Sure [12] proposed an ontology
based skill management system for eliciting employee skills and searching for
experts within an insurance company. Ragone et al. [20] investigated peer-to-
peer e-market place of used cars and presented a fuzzy extension of Datalog to
match sellers and buyers based on required and offered properties of cars.

Di Noia et al. [7] placed matchmaking on a consistent theoretical foundation
using description logic. They defined matchmaking as information retrieval task
where demands and supplies are expressed using the same semi-structured data
in form of advertisement and task results are ranked lists of those supplies best
fulfilling the demands. Popov and Jebelean et al. [18] used filters in the ontology
hierarchy lattice to represent profiles and defined matching function based on
the filters.

We also assumed a structure among elements of profiles. We supposed this
structure is an ontology that fulfills lattice properties as well and similarly to
Popov’s proposal we also represented profiles with filters. However, we extended
the ontology lattice with extra edges to capture such relationships that sub-
sumptions cannot express. Then we showed how these edges are usable to refine
the ontology.

There are several methodologies to learn ontologies from unstructured texts
or semi-structured data [4,21]. Besides identifying concepts, discovering rela-
tionships between the concepts is a crucial part of ontology construction and
refinement. Text-To-Onto [16] uses statistical, data mining, and pattern-based
approaches over text corpus to extract taxonomic and non-taxonomic relations.
In [22], various similarity measures were introduced between semi-structured
Wikipedia infoboxes and then SVMs and Markov Logic Networks were used to
detect subsumptions between infobox-classes.

We presented a method to refine ontology based on extra edges that represent
some sort of quantifiable relationship between skills. These relationships can be
given by domain experts, computed from statistics, or resulted by data mining
techniques. For example, in [24] the authors used association rules and latent
semantic indexing over job offers to detect relationships between competencies.
In our method we defined profile extensions and weighting functions as well to
preserve matching values of profiles computed from edge weights.

Formal concept analysis (FCA) [9] is also used to build and maintain formal
ontologies. For example, Cimiano et al. [6] presented a method of automatic
acquisition of concept hierarchies from a text corpus based on FCA. In [15], the
authors used FCA to revise ontology when new knowledge was added to it.

338 G. Rácz et al.

In our method we used FCA to restore lattice properties after added new
nodes and edges to it based on extra edges. However as we focused on preserving
matching values of profiles during the transformations, we adapted our profile
weighting functions to the modified ontology lattice as well.

7 Summary

In this paper we investigated how ontology lattices can be extended by additional
information and used for semantic matching. We focused on the field of human
resources and defined matching functions to find the most suitable applicant to
a job offer, however, our results are applicable in other fields as well.

First, profiles of job applications and offers were represented as filters in an
ontology lattice of skills that was built based on specialization relations between
skills. Then, the ontology lattice got extended by additional information in form
of extra edges describing quantifiable relations between the skills. A directed
graph was built from the lattice endowed with extra edges to handle directed
cycles that the new edges might have introduced and matching functions were
defined based on reachable, or derived, nodes from profiles’ nodes.

Two approaches were presented to extend profiles with derived nodes. In
the first one, the offer and the applications were all extended, since the same
profile can describe an application and an offer as well and these cases should be
handled uniformly. In the second approach, only the applications were extended
to help the employer differentiate better among the applicants.

We presented a method that eliminates directed cycles from the graph. It
constructed an extension graph by adding node chains to the original lattice
based on directed paths between nodes in the directed graph and node weights
got also modified as part of the construction. An extension graph is a directed
acyclic graph and therefore a poset but it is not necessary a lattice. Formal con-
cept analysis was used to extend the poset into a concept lattice so that filters of
this lattice could be used to calculate matching values. Different node weightings
were used to preserve the original matching values in the two approaches.

Comparisons of the sizes of the ontology lattice and the generated acyclic
directed graph, as well as the concept lattice were given.

References

1. European Dictionary of Skills And Competences. http://www.disco-tools.eu
2. International Standard Classification of Education. http://www.uis.unesco.org/

Education/Pages/international-standard-classification-of-education.aspx
3. International Standard Classification of Occupations (2008)
4. Buitelaar, P., Cimiano, P., Magnini, B.: Ontology learning from text: an overview.

Ontol. Learn. Text: Methods Eval. Appl. 123, 3–12 (2005)
5. Choi, S.S., Cha, S.H., Tappert, C.C.: A survey of binary similarity and distance

measures. J. Systemics Cybern. Inf. 8(1), 43–48 (2010)
6. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora

using formal concept analysis. J. Artif. Intell. Res. (JAIR) 24(1), 305–339 (2005)

http://www.disco-tools.eu
http://www.uis.unesco.org/Education/Pages/international-standard-classification-of-education.aspx
http://www.uis.unesco.org/Education/Pages/international-standard-classification-of-education.aspx

Semantic Matching and Formal Concept Analysis 339

7. Di Noia, T., Di Sciascio, E., Donini, F.M.: Semantic matchmaking as non-
monotonic reasoning: a description logic approach. J. Artif. Intell. Res. (JAIR),
29, 269–307 (2007)

8. Ganter, B., Kuznetsov, S.O.: Stepwise construction of the Dedekind-MacNeille
completion. In: Mugnier, M.-L., Chein, M. (eds.) ICCS-ConceptStruct 1998. LNCS,
vol. 1453, pp. 295–302. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054922

9. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis. LNCS (LNAI),
vol. 3626. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31881-1

10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer Science & Business Media, Heidelberg (2012)

11. Hájek, P.: Mathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht
(1998)

12. Lau, T., Sure, Y.: Introducing ontology-based skills management at a large insur-
ance company. In: Proceedings of the Modellierung, pp. 123–134 (2002)

13. Levandowsky, M., Winter, D.: Distance between sets. Nature 234(5), 34–35 (1971)
14. Liu, L., Li, K.: Fuzzy filters of bl-algebras. Inf. Sci. 173(1), 141–154 (2005)
15. Looser, D., Ma, H., Schewe, K.D.: Using formal concept analysis for ontology main-

tenance in human resource recruitment. In: Proceedings of the Ninth Asia-Pacific
Conference on Conceptual Modelling, Vol. 143, pp. 61–68. Australian Computer
Society Inc. (2013)

16. Maedche, A., Volz, R.: The ontology extraction & maintenance framework text-to-
onto. In: Proceedings of the Workshop on Integrating Data Mining and Knowledge
Management, USA, pp. 1–12 (2001)

17. Mart́ınez Gil, J., Paoletti, A.L., Rácz, G., Sali, A., Schewe, K.D.: Accurate and
efficient profile matching in knowledge bases (2017, submitted for publication)

18. Popov, N., Jebelean, T.: Semantic matching for job search engines–a logical app-
roach. Technical report 13-02, Research Institute for Symbolic Computation. JKU
Linz (2013)

19. Rácz, G., Sali, A., Schewe, K.-D.: Semantic matching strategies for job recruitment:
a comparison of new and known approaches. In: Gyssens, M., Simari, G. (eds.)
FoIKS 2016. LNCS, vol. 9616, pp. 149–168. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-30024-5 9

20. Ragone, A., Straccia, U., Di Noia, T., Di Sciascio, E., Donini, F.M.: Fuzzy match-
making in e-marketplaces of peer entities using Datalog. Fuzzy Sets Syst. 160(2),
251–268 (2009)

21. Shamsfard, M., Barforoush, A.A.: The state of the art in ontology learning: a
framework for comparison. Knowl. Eng. Rev. 18(4), 293–316 (2003)

22. Wu, F., Weld, D.S.: Automatically refining the wikipedia infobox ontology. In:
Proceedings of the 17th International Conference on World Wide Web, pp. 635–
644. ACM (2008)

23. Wygralak, M.: Cardinalities of Fuzzy Sets. Springer, Heidelberg (2003)
24. Ziebarth, S., Malzahn, N., Hoppe, H.U.: Using data mining techniques to support

the creation of competence ontologies. In: AIED, pp. 223–230 (2009)

https://doi.org/10.1007/BFb0054922
https://doi.org/10.1007/BFb0054922
https://doi.org/10.1007/978-3-540-31881-1
https://doi.org/10.1007/978-3-319-30024-5_9
https://doi.org/10.1007/978-3-319-30024-5_9

OntoDebug: Interactive Ontology
Debugging Plug-in for Protégé

Konstantin Schekotihin(B), Patrick Rodler , and Wolfgang Schmid

Alpen-Adria-Universität, Klagenfurt, Austria
{konstantin.schekotihin,patrick.rodler,wolfgang.schmid}@aau.at

Abstract. Applications of semantic systems require their users to
design ontologies that correctly formalize knowledge about a domain.
In many cases factors such as insufficient understanding of a knowledge
representation language, problems concerning modeling techniques and
granularity, or inability to foresee all implications of formulated axioms
result in faulty ontologies.

Debugging tools help to localize faults in ontologies by finding expla-
nations of discrepancies between the actual ontology and the intended
one. In this paper we present OntoDebug – a plug-in for the currently
most popular open-source ontology editor Protégé – that implements an
interactive approach to ontology debugging. Given a faulty ontology and
a specification of requirements to the intended ontology, encoded as a set
of test cases, our tool finds a set of faulty axioms explaining the prob-
lem. In case the user provides a set of test cases that does not allow for
the computation of a unique explanation, OntoDebug is able to collect
the missing information by asking the user a sequence of automatically
generated questions.

1 Introduction

Broad application of semantic systems requires the existence of tools allowing
for an efficient and intuitive localization of faults in the underlying ontologies.
The main reason for such erroneous ontological definitions is that for humans
it is generally hard to formulate correct logical descriptions [6], even if they
have some experience with the used knowledge representation language [18,25].
In order to solve the fault localization problem a number of ontology debug-
ging approaches were suggested over time aiming to explain inconsistency of an
ontology or unsatisfiability of its classes [3,5,8,27].

Most of the approaches are derived from the Model-Based Diagnosis (MBD)
techniques such as [10,19] in which a fault is revealed by comparison of expected
and observed states of a system. Similarly [22], in case of ontology debugging
these approaches investigate discrepancies between user requirements to the
intended ontology, such as consistency, satisfiability of certain classes, entail-
ment or non-entailment of axioms, etc., and observations made for the current
version of an ontology. If some discrepancies are found, e.g. the developed ontol-
ogy is inconsistent, then a fault is detected and the debugger is called to localize
one or more faulty axioms, called diagnosis, that explain the observed behavior.
c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 340–359, 2018.
https://doi.org/10.1007/978-3-319-90050-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_19&domain=pdf
http://orcid.org/0000-0001-8178-4692

OntoDebug: Interactive Ontology Debugging Plug-in for Protégé 341

The fault localization is usually implemented using various search techniques.
One differentiates between glass-box and black-box approaches [16]. Glass-box
methods, such as [1,16,26] introduce significant modifications to general-purpose
description logic reasoners with the goal to use available internal information for
a fast computation of diagnoses. In contrast, black-box approaches [3,5,8] are
not dependent on the underlying reasoning algorithms. They use a reasoner as
an oracle to check if some set of axioms is consistent and/or coherent.1 Therefore
such approaches can immediately benefit from the most recent advances in rea-
soning algorithms as well as use reasoners specifically designed and tuned for the
developed ontology. As various evaluations indicate, glass-box approaches might
show better performance in comparison to black-box ones. However, in [4] the
authors demonstrate that these gains lay within the same order of magnitude
and, therefore, are not significant.

Existing ontology development environments, such as Protégé [15], Swoop [9]
or ORE [12], use various fault localization methods allowing for the debugging of
ontologies. For instance, in Swoop both black-box and glass-box approaches [16]
were used to find a justification why some class is unsatisfiable. These justifica-
tions, also called minimal conflict sets, are irreducible sets of axioms that entail
unsatisfiability of the class. To increase the understandability of its explana-
tions, Swoop generated quasi-natural language descriptions out of the identified
axioms, which were then presented to the user. ORE uses a sound but incom-
plete variant of the same black-box algorithm for computation of justifications
as in Swoop. This trade-off results in a significant speed-up in a number of cases,
but incompleteness might result in situations where some faults cannot be found
by the debugger. Finally, Protégé uses an implementation of the black-box algo-
rithms presented in [8] to search for justifications of ontology entailments. The
main advantage of this approach is that it can simplify axioms in justifications
by computing their laconic versions [5]. The latter comprise only those parts
of axioms which are essential for the derivation of the selected entailment. In
addition, the same algorithm can be used to find explanations for the inconsis-
tency of an ontology. However, these explanations are represented by collections
of justifications, which must be analyzed manually by the user in order to find
a correct repair.

Since in the general case there might exist an exponential number of expla-
nations for a fault in an ontology, an interactive debugger was suggested in [28].
If the available information about a fault in an ontology is insufficient to localize
the fault and multiple diagnoses are returned by the debugger, the interactive
algorithm tries to acquire this missing information by asking a user a number of
questions: Whether some axiom must be or must not be entailed by the intended
ontology. Given answers of the user, the debugger recomputes the set of diag-
noses and, if the fault is not yet revealed, asks additional questions.

1 An ontology O is coherent iff there do not exist any unsatisfiable classes in O. A
class X is unsatisfiable in an ontology O iff, for each interpretation I of O, XI = ∅.
See also [17, Definitions 1 and 2].

342 K. Schekotihin et al.

Contributions. In this paper we present OntoDebug – an interactive ontology
debugger for Protégé – which is available in the standard plug-ins repository
of Protégé and can be installed directly in the editor. Our interactive debugger
builds on the ideas of the tools listed above and improves on them as follows:

– OntoDebug implements a number of black-box algorithms suggested for ontol-
ogy debugging over the recent decade [3,5,29,30].2 The best debugging per-
formance of the plug-in for various ontologies is achieved in combination with
modern reasoners available in Protégé, such as Pellet [31] or Hermit [14].

– The debugging process is user centric. By using the interactive techniques
suggested in [28] and further improved in [20,21,23] our approach requires
the user only to use her domain knowledge to answer questions about axioms
of the intended ontology. As opposed to the existing approaches the user is
not required to manually define, analyze and compare various explanations
and/or justifications.

– The plug-in enables test-driven ontology development. OntoDebug supports
definition of test cases, which capture requirements of the user to the intended
ontology. In particular, the user can define axioms which must be entailments
or non-entailments of the intended ontology. OntoDebug automatically veri-
fies the test cases and starts a debugging session if at least one of them does
not hold.

– Versatile parametrization of various algorithm combinations. For any debug-
ging computation task the plug-in offers a number of algorithms that work
best in different settings. Selection and proper parametrization of appropriate
algorithms can help to significantly reduce the delays of OntoDebug between
two queries.

– Repair interface enabling non-intrusive modifications of the ontology. While
defining a correct repair, a user can introduce and test various modifications
of faulty axioms on a virtual copy of the ontology. All modifications will be
applied only when the user is satisfied with the obtained result.

The paper is organized as follows. In Sect. 2 we provide a brief introduction to
the theoretical background of interactive ontology debugging. The architecture
and the user interface of OntoDebug are presented in Sect. 3. Section 4 describes
the possible settings of the plug-in and gives some hints on how to appropriately
configure the tool for different purposes of application. Finally, we conclude in
Sect. 5.

2 Interactive Ontology Debugging

Approaches to ontology debugging, such as those described in the previous
section, are aiming at finding explanations of various discrepancies between
the current O and the intended ontology O∗. Examples of such discrepancies

2 The source code and documentation is available at https://git-ainf.aau.at/inter
active-KB-debugging/debugger.

https://git-ainf.aau.at/interactive-KB-debugging/debugger
https://git-ainf.aau.at/interactive-KB-debugging/debugger

OntoDebug: Interactive Ontology Debugging Plug-in for Protégé 343

include an inconsistency of O, unsatisfiability of its classes, presence (absence) of
unwanted (expected) entailments, etc. Ontology debuggers can help their users
by automatically finding sets of logical axioms in O that must be changed in
order to allow for the definition of the intended ontology O∗.

Example 1 (Simple ontology). Consider the ontology with the terminology T :

{ax 1 : A � B, ax 2 : B � C, ax 3 : C � D, ax 4 : D � R}

and assertions A : {A(w), A(v)}. Let the user explicitly declare all axioms in A
as correct (which at the same time means that all axioms in T are considered
potentially faulty). In this case we say that B := A is the specified background
knowledge [20, Sect. 3.2] for the debugging session and O := T is the ontology to
be debugged. The implication of this is that faults are only sought within O in
the “context” of B, i.e. all the requirements to the intended ontology O∗ such as
consistency and fulfillment of test cases must hold for the union O∗ ∪ B. Finally,
the user specifies test cases to check whether O corresponds to the intended
ontology O∗. Let the test cases define that O∗ ∪ B entails (i) none of the axioms
in the collection of negative test cases N = {R(w)}, i.e. O∗ ∪ B �|= n ∀n ∈ N ,
and (ii) each axiom in the collection of positive test cases P = {B(v)}, i.e.
O∗ ∪ B |= p ∀p ∈ P .

Since O ∪ B given in the example entails R(w), some axioms in O must be
modified in order to obtain O∗. The only irreducible set of axioms in O, called
a minimal conflict set or a justification in the literature, that violates the user
requirements is CS : {ax 1, ax 2, ax 3, ax 4}. In order to fulfill the requirements
provided in the sets P and N the user must modify or remove at least one of the
axioms ax i ∈ CS . Consequently, there are four minimal repair strategies, called
minimal diagnoses:

D1 : [ax 1] D2 : [ax 2] D3 : [ax 3] D4 : [ax 4] (1)

��

Note, the specification of a background theory B as well as of the test cases P
and N allows the debugger to stay focused on the possibly incorrect statements
and might significantly reduce the runtime of search procedures.

The presence of more than one diagnosis indicates that the information pro-
vided by the user to the debugger is insufficient for localization of the real cause
of the problem. Therefore, the user must either select the correct diagnosis man-
ually or provide more information, e.g. by extending the set N or declaring
more axioms as correct moving them from the ontology O to the background
knowledge B.

Example 2. Assume that in Example 1 the user adds a negative test case B(w).
Given the sets N = {R(w), B(w)} and P = {B(v)}, the debugger will return
only one diagnosis D1, which explains the fault in O. That is, O ∪ B |= B(w)
because of ax 1 ∈ O and an assertion A(w) ∈ B. ��

344 K. Schekotihin et al.

However, the application of diagnosis D1 results in a new ontology O1 :=
O\D1 that, along with B, does not entail B(v) as required by the set of positive
test cases. Consequently, O1 must be extended with some set of axioms EX
such that O1 ∪ EX fulfills all requirements to O∗. Of course, the intended set
EX is unknown to the debugger and possibly some complex learning methods
must be used to obtain it. One solution [20, Proposition 3.5] to this problem is
to approximate EX with the set of positive test cases P , which comprises all
necessary entailments of O∗. In our example the ontology O1 ∪ P satisfies all
test cases. Hence, in order to specify O∗ the user must extend the ontology O1

with the assertion B(v) or axioms entailing B(v).

Definition 1 (Diagnosis Problem Instance (DPI)). Let O be an ontol-
ogy (including possibly faulty axioms) and B be a background theory (including
correct axioms) where O ∩ B = ∅, and let O∗ denote the (unknown) intended
ontology. Moreover, let P and N be sets of axioms where each p ∈ P must
and each n ∈ N must not be entailed by O∗ ∪ B, respectively. Then, the tuple
〈O,B, P,N〉 is called a diagnosis problem instance (DPI).

Definition 2 (Diagnosis). Let 〈O,B, P,N〉 be a DPI. Then, a set of axioms
D ⊆ O is a diagnosis iff both of the following conditions hold:

1. (O \ D) ∪ P ∪ B is consistent (coherent, if required)
2. (O \ D) ∪ P ∪ B �|= n for all n ∈ N

A diagnosis D is minimal iff there is no D′ ⊂ D such that D′ is a diagnosis.

Note that, following [10,19], in our approach we focus on the computation of
minimal diagnoses Di only, since they suggest the smallest possible changes of
a faulty ontology. That is, each axiom ax j ∈ Di is faulty and must be modified,
whereas each axiom axk ∈ O \ Di is correct and its alteration is redundant.

Computation of diagnoses for ontologies can be accomplished by means of
various algorithms. Some of them compute diagnoses directly [29], whereas others
[3,8,20,27] find diagnoses using conflict sets. In many practical scenarios these
sets allow for an efficient restriction of the search space, which in turn causes a
good performance of debugging approaches.

Definition 3 (Conflict Set). Given a DPI 〈O,B, P,N〉, a set of axioms CS ⊆
O is a conflict set iff at least one of the following conditions holds:

1. CS ∪ P ∪ B is inconsistent (incoherent)
2. CS ∪ P ∪ B |= n for some n ∈ N .

A conflict set CS is minimal iff there is no conflict set CS ′ where CS ′ ⊂ CS.

The conflict-based approaches use the property shown in [19], which states that
a (minimal) diagnosis is a (minimal) hitting set of all minimal conflict sets.

OntoDebug: Interactive Ontology Debugging Plug-in for Protégé 345

Example 3. Reconsider Example 1 presented above, in which the ontology
debugger returns four minimal diagnoses {D1, . . . ,D4}. In this case the user
must modify the DPI by specifying more test cases and allowing the debugger
to narrow its search and to find the correct diagnosis. Users might have various
strategies for finding these missing test cases. One of them is to compare the
entailments of the repaired ontologies O∗

i := (O \Di) ∪ P (along with the back-
ground knowledge B) that result from the application of the different diagnoses
Di. In our example all the four thus obtained ontologies have, among others,
the following class assertion entailments regarding the individual w, that can be
computed using instantiation algorithms of a description logic reasoner [14,31]:

O∗
1 : ∅ O∗

2 : {B(w)} O∗
3 : {B(w), C(w)} O∗

4 : {B(w), C(w),D(w)} (2)

Any assertion B(w), C(w), or D(w) can be used as a test case allowing for the
discrimination between the diagnoses. For instance, assume the user extends the
input DPI 〈T , {A(v), A(w)}, {B(v)}, {R(w)}〉 with a positive test case D(w). For
the resulting new DPI 〈T , {A(v), A(w)}, {B(v),D(w)}, {R(w)}〉 the debugger
can find only the single minimal diagnosis D4 = [ax 4]. In fact, all other minimal
diagnoses for the input DPI, namely D1 = [ax 1],D2 = [ax 2] and D3 = [ax 3], are
no longer diagnoses for the new DPI. That is, for i ∈ {1, 2, 3}, the assumption
that ax i is the only faulty axiom in O conflicts with the new positive test case
D(w). Because each O∗

i ∪ B for i ∈ {1, 2, 3} includes the axiom ax 4 : D � R
which causes the unwanted entailment R(w) ∈ N once the necessary entailment
D(w) is added. However, since ax4 is the only axiom in O that can cause the
entailment R(w) given D(w), it follows that ax 4 must be faulty given the new
DPI. In other words, all diagnoses for the new DPI must include ax4, which is
why D4 is the only minimal repair remaining. ��

An interactive debugger [20,28] automates the process described in the exam-
ple and suggests its user good possible test cases. The user in this case must only
provide the correct classification of the suggested axioms to either P or N . In
particular, we model the user as a query-answering oracle as follows:

Definition 4 (Oracle). Let Ax be a set of axioms and ans : Ax → {P,N} a
function which assigns axioms in Ax to either the positive or the negative test
cases. Then, we call ans an oracle wrt. the intended ontology O∗, iff for ax ∈ Ax
both of the following conditions hold:

ans(ax) = P =⇒ O∗ ∪ B |= ax (3)

ans(ax) = N =⇒ O∗ ∪ B �|= ax (4)

The implications in Eqs. (3) and (4) signify that the oracle classifies each axiom
based on the intended ontology O∗. The oracle function ans can be either total
or partial. In the former case the oracle can be seen as a full domain expert for
O∗ (able to label all asked axioms as P or N), in the latter as a partial domain
expert (possibly not able to label all asked axioms as P or N). Note, in case of a
full domain expert, the implications in Eqs. (3) and (4) become bi-implications,

346 K. Schekotihin et al.

telling that exactly all axioms in Ax entailed by O∗ (along with B) are assigned
to P and exactly all that are not entailed are added to N .

A query is a set of axioms Q that guarantees the elimination of at least
one diagnosis given any answer of a full domain expert. More formally, letting
QP

ans := {q ∈ Q | ans(q) = P} and QN
ans := {q ∈ Q | ans(q) = N} denote the

subsets of Q assigned to P and N by an oracle ans, respectively, we define:

Definition 5 (Query). Let 〈O,B, P,N〉 be a DPI, D be a set of diagnoses
for this DPI, and Q be a set of axioms. Then we call Q a query for D iff,
for any classification QP

ans, Q
N
ans of the axioms in Q of a full domain expert

oracle ans, at least one diagnosis in D is no longer a diagnosis for the new DPI〈
O,B, P ∪ QP

ans, N ∪ QN
ans

〉
.

Computation of queries can be done by different algorithms. These usually
rely on the concept of a query partition, a unique partitioning

〈
DP,DN,D∅〉 of

the (known) diagnoses D into three sets based on a given set of axioms Q:

– DP includes all diagnoses in D that predict an all-positive classification of
the oracle ans for Q, i.e. QP

ans = Q (and thus QN
ans = ∅)

– DN includes all diagnoses in D that predict a some-negative classification of
the oracle ans for Q, i.e. QN

ans ⊃ ∅ (and thus QP
ans ⊂ Q),

– D∅ includes all diagnoses in D \ (DP ∪ DN).

Formally, a diagnosis Di predicts

(a) an all-positive,
(b) a some-negative

classification of the oracle ans for Q, respectively, iff for the ontology O∗
i =

(O \ Di) ∪ P it holds that

– O∗
i ∪ B |= Q for (a),

– O∗
i ∪ B ∪ Q |= n for some n ∈ N or is inconsistent (incoherent) for (b).

Given the notion of a query partition, we have:

Proposition 1. A set of axioms Q is a query for D as per Definition 5 whenever
both sets DP and DN in the query partition of Q are non-empty.

Besides being useful for query verification (as per Proposition 1), a query par-
tition also enables the estimation of the quality of a query. A brute force query
computation algorithm suggested in [28], for instance, exploits query partitions
in that it investigates query partition candidates by enumerating all subsets
of the set D. For each candidate the algorithm checks whether there exists a
set of axioms which is a query according to Definition 5. Given a query selec-
tion measure [21] that maps any query partition to a real number (expressing
the goodness of the partition), more sophisticated algorithms can be used. For
example, in [28] the authors adopted the Complete Karmarkar-Karp algorithm
[11] to efficiently find a query partition that maximizes the expected information

OntoDebug: Interactive Ontology Debugging Plug-in for Protégé 347

gain after a user answers the query [10]. Further performance improvements can
be achieved by minimizing the number of reasoner calls required to compute a
query. Thus, the approach presented in [23] first constructs a query prototype
that optimizes the given measure using only implicit information provided by
the set of diagnoses D. The reasoner is then only called optionally for the one
already optimized prototype to achieve further enhancements wrt. additional
query quality metrics such as easy understandability of sentences in the query.

Note also that the evaluation of query selection measures is often based on
additional information about possibly faulty axioms [20, Sect. 4.6], e.g. by defin-
ing for every such axiom its probability of being faulty. In [28] such probabilities
are computed by analyzing axioms and estimating how well a user can under-
stand them. This estimation might be accomplished using some user profile,
which assesses for every syntactic feature of a knowledge representation language,
e.g. boolean connectives or property restrictions in OWL2, a probability for the
user to use this feature in a wrong way. Such a profile can be either established
manually by the user or generated automatically by analyzing past debugging
sessions of that user. Moreover, a user profile can be refined by incorporating
the user’s contentual expertise and possibly some axiom provenance informa-
tion [20]. For instance, in a medical ontology, for a dermatologist the probability
of making content-related mistakes using the classes Melanoma, Eczema or Acne
will usually be rather small, and lower than for a, say, oculist using these terms.

Example 4. Let us sketch the query generation and selection by means of the
entropy-based quality measure proposed in [10] for our Example 1. Recall that
we had four minimal diagnoses D = {D1, . . . ,D4} for this DPI, given by Eq. (1),
and therefore four respective ontologies O∗

i = (O \ Di) ∪ P resulting from the
application of the diagnoses Di to the ontology O. Assume that a user profile
based on syntactical axiom structure, as discussed above, is used to assess the
fault likeliness of axioms ax i in O. In this case, since all axioms share the same
structure (including only the logical connective �) and each Di ∈ D includes
exactly one axiom, it can be easily derived that all diagnoses in D have the same
probability 0.25 (normalized over D). Since the entropy-based query selection
measure is optimized if the sum of diagnoses probabilities in the query partition
set DP is equal to the sum of diagnoses probabilities in the query partition set
DN [28], the query selection will in this case favor queries including two of the
four diagnoses in each of the sets DP and DN. Let the reasoner used for query
computation (be configured in a way to) compute exactly the entailments for
the ontologies O∗

i (along with B) given in Eq. (2), and let the adopted query
computation algorithm be similar to the one suggested in [20, Chap. 8]. Then,
the explored query candidates are sets of common (reasoner) entailments of some
ontologies out of {O∗

1 ∪ B, . . . ,O∗
4 ∪ B}, e.g. Q1 := {B(w), C(w)} is a generated

candidate because it is entailed by both ontologies in {O∗
3 ∪ B,O∗

4 ∪ B}. In
other words, if the oracle ans says that some element(s) of Q1 must not be
entailed, (at least) diagnoses D3,D4 are no longer diagnoses for the new DPI, i.e.
D3,D4 ∈ DP. In contrast, if all elements of Q1 must be entailed according to ans,

348 K. Schekotihin et al.

Fig. 1. Ontology evolution using OntoDebug

then D1,D2 are no diagnoses for the new DPI as both O∗
1 ∪ B,O∗

2 ∪ B do not allow
for the addition of the postulated entailment C(w) ∈ Q1 without violating some
other required criteria, in this case the negative test case R(w). Hence, D1,D2 ∈
DN. The obtained query partition for Q1 is thus 〈{D3,D4} , {D1,D2} , ∅〉; since
both DP and DN are non-empty sets, Q1 is in fact a verified query conforming
to Definition 5 (cf. Proposition 1). Using the reasoner, similarly as described, for
candidate generation and query verification leads to a pool of queries, from which
the best wrt. the entropy measure is selected. In this case, Q1 turns out to be
the optimal choice (with even the best theoretical entropy value, as explained
above). However, as a final query minimality check [20, Sect. 8.3] yields that
Q′

1 = {C(w)} has exactly the same query partition and thus entropy measure
as Q1, but comprises fewer sentences (less effort for the user), the minimized
optimal query Q′

1 is finally presented to the interacting user. ��

3 OntoDebug Protégé Plug-in

In diagnosis literature [32] one distinguishes between various diagnostic goals,
namely fault detection (is there a fault?), fault localization (where is the fault?) as
well as fault identification (what is the fault?) and correction. OntoDebug assists
the user regarding all these tasks. In particular, the ontology evolution using
OntoDebug can be characterized as a reiteration of four main phases, shown in
Fig. 1: (1) ontology development, (2) fault detection, (3) fault localization, (4)
fault identification and correction. We next explicate all four stages.3

3 Please note that our OntoDebug Plug-In is still in the development phase and that
changes regarding its described look & feel or functionality enhancements might still
be incorporated in the future.

OntoDebug: Interactive Ontology Debugging Plug-in for Protégé 349

Fig. 2. Koala ontology in Protégé

(1) Ontology Development. In this stage a user formulates, modifies or deletes
axioms with the goal of expressing the intended ontology. In addition, a user
might i.e. browse the ontology, use some visualization plug-ins offered by Protégé
or call a reasoner. For instance, by invoking the reasoner a user can verify con-
sistency of the ontology and satisfiability of its classes, check axioms inferred
by classification and realization services, or – in conjunction with a Protégé
Explanation Plug-In – compute justifications [5] for certain inferences.

When analyzing the manually defined and inferred axioms, i.e. the semantics,
of the present ontology, a user might have doubts about their correctness. The
reasons for these doubts might be explicit or implicit. In the first case a user
might directly detect the presence of a fault, e.g., by observing that the ontology
is inconsistent, incoherent, or has entailments which are obviously incorrect. In
such a situation, the fault detection is already accomplished by the user who can
now directly commence the fault localization, see stage (3) below.

Example 5. Consider a Koala ontology4 which was created for educational pur-
poses and illustrates common problems occurring in cases where users do not
completely understand the knowledge representation language they are using.
Due to mistakes made while developing the ontology, a reasoner recognizes three

4 This ontology can be loaded from bookmarks in Open from URL... menu of Protégé.

350 K. Schekotihin et al.

Fig. 3. Interactive debugging session in OntoDebug (DPI specification)

subclasses of the Marsupials class, namely Koala, KoalaWithPhD, and Quokka,
as unsatisfiable classes and Protégé labels them in red (see Fig. 2). In fact, the
user erroneously used one of the two properties isHardWorking and hasDegree
to describe each of the three classes listed above. Since the domains of these
properties are restricted to a Person class, the reasoner derives that Koala,
KoalaWithPhD, and Quokka are subclasses of the class Person. However, the
ontology comprises an axiom stating that the classes of marsupials and persons
are disjoint, which results in an unsatisfiability of the three discussed classes.
Since in this case the user is able to detect the presence of a fault directly in
the editor, she can immediately start an interactive debugging session in the
debugger tab. ��

In the second – implicit – case, the user might only conjecture that some-
thing is wrong, i.e. the faultiness of the ontology is not obvious. For example,
the user might find that over time, after multiple modifications, some of the
ontology axioms are hard to understand, relations between them are unclear,
or their entailments are not comprehensible. Therefore, similarly to the scenario

OntoDebug: Interactive Ontology Debugging Plug-in for Protégé 351

discussed in Example 1, the user might want to verify such axioms by formu-
lating a fault conjecture, which can be defined as test cases in OntoDebug, see
stage (2) below.

(2) Fault Detection. This stage is where OntoDebug first comes into play. To use
it for fault detection, the user can simply open the debugger tab in Protégé and
specify a DPI based on the ontology O at hand. In particular, the user interface
of OntoDebug allows its users to move correct axioms to the background theory
which enables OntoDebug to focus just on the relevant ontology parts. If in
Example 5 the user wants to focus on class axioms only, then she should move
all assertions and property restrictions from the list of Possibly Faulty Axioms
to the list of Correct Axioms in the Input Ontology view. In addition, the user
might specify positive test cases P , which describe desired entailments, as well as
negative test cases N that correspond to non-desired entailments. In Fig. 3 both
lists, which are shown in the Original Test Cases view, comprise one axiom. The
positive test case states that ontology axioms must allow for an entailment “a
student is a person” and the negative one asserts that “a person is a marsupial”
must not be entailed.

Given the final DPI 〈O,B, P,N〉, the verification of ontology consistency
(coherency) and execution of the test cases can be triggered by the “Start”
button. If no faults are present, i.e. the user’s fault conjecture is unjustified,
OntoDebug informs the user about this fact whereupon the user can continue
with the ontology development. Otherwise, i.e. if the ontology is inconsistent
(incoherent) or the evaluation of at least one test case is unsuccessful, OntoDebug
automatically invokes the diagnoses computation as well as query generation and
selection engines to provide the user with a first question, thereby initializing
the fault localization process.

(3) Fault Localization. OntoDebug localizes faults in an ontology by executing
an interactive query session, a snapshot of which is presented in Fig. 4. During
this process, the user gets queries about desired entailments and non-entailments
of the intended ontology in the Queries view.

For instance, in the second iteration of the query session, shown in Fig. 4, the
user is asked whether “a Koala with PhD is a Koala” and “a Koala with PhD is a
Person” must or must not be entailed by the intended ontology. In our case, using
the common knowledge about koalas, the user classifies positively the first axiom
and negatively the second, as indicated by corresponding buttons. The “Submit”
button instructs OntoDebug to construct a new DPI in which the first axiom
is added to the list of positive test cases and the second to the list of negative
ones. The answers of the user provided during the query session are shown in the
Acquired Test Cases view. In our example, the query asked in the first iteration
of the session, namely “a Koala is a Marsupial” was answered positively and the
corresponding axiom was added to the list of Entailed Testcases.

In case the user misclassified an axiom and wants to backtrack, she can
simply remove this axiom from the Acquired Test Cases lists. OntoDebug will
automatically recompute the diagnoses and suggest a new query.

352 K. Schekotihin et al.

Fig. 4. Interactive ontology debugging session in OntoDebug (during query session)

Note, a handy feature of the automatic query suggestion implemented by
OntoDebug is the guaranteed avoidance of any incompatibilities regarding the
acquired test cases, independent of the provided user answers. By contrast, in the
same way as faults might creep in during the development of the ontology itself,
inconsistencies between test cases might arise when they are specified manually.

Also, the user is not required to be a full domain expert (cf. Sect. 2) wrt.
the intended ontology, i.e. not every axiom in a shown query must be classified
positively or negatively. In fact, simply not marking an axiom by (+) or (−)
means “unknown”, which is handled in a way that the respective axiom is nei-
ther added to P (Entailed Test Cases) nor to N (Non Entailed Test Cases). Since
OntoDebug currently focuses on queries for the full expert case, the implication
of answering the query partially might be a weaker discrimination among the
possible repairs. It is a future research topic to develop methods for query com-
putation and optimization in case of interaction with a partial domain expert.

Acquisition of test cases allows OntoDebug to restrict the set of minimal
diagnoses D (cf. Sect. 2) shown in the Possible Ontology Repairs view. Consec-
utive query answering enables the final determination of the (single) semanti-

OntoDebug: Interactive Ontology Debugging Plug-in for Protégé 353

cally correct minimal diagnosis, i.e. the proper minimally invasive repair for the
ontology O. Any other minimal diagnosis has a (proven) wrong semantics [20].
Also, OntoDebug presents the current repairs to the user in a best-first order,
e.g., most probable or minimum cardinality first. Besides, the already computed
minimal conflict sets are constantly refined by OntoDebug and can be displayed
on demand. These represent minimal faulty sub-ontologies, i.e. justifications for
non-desired entailments or inconsistency/incoherency. Analysis of minimal con-
flicts can help the user to gain further insight into the problems in the ontology
or to make better sense of the shown repairs.

We emphasize that a “manual” analysis of conflict sets and repairs as an
approach to fault localization might be tedious (exponentially many repair can-
didates), error-prone [5] and mentally (over)straining [2] and thus often not
viable. As opposed to this, in OntoDebug the user is not required to analyze

– why exactly the input ontology is faulty, or
– which entailments (axioms) do or do not hold, or why certain entailments do

or do not hold, in the faulty input ontology.

All the user is required to do is answering questions about whether specific
statements should be true or not true in the intended ontology.

Given the answers, OntoDebug will return which axioms must be repaired
in the faulty input ontology. The event of just one remaining repair or the com-
mitment of the user to one (of multiple) repair(s) marks the transition between
the fault localization (3) and the fault identification stage (4).

(4) Fault Identification. For the purpose of fault identification, OntoDebug pro-
vides a separate repair interface presented in Fig. 5. This interface comes i.a.
with the functionality of enabling a per-axiom modification or deletion, using
Protégé’s built-in editor. Moreover, the user can analyze the faults caused by
exactly this particular axiom by considering explanations generated by the
debugger. The latter feature is supposed to give the user a hint of how the
axiom contributes to the faults and what to change in the axiom in order to
obtain a correct ontology. In our example, Explanation 1 comprises all axioms
that are relevant to the axiom describing the Quokka class, which is selected in
the Repair view above. Analysis of these axioms elucidates that a Quokka is a
Marsupial (axiom 5) and a Person (axioms 2 and 4) simultaneously. However,
since Marsupial and Person are disjoint classes (axiom 1), the Quokka class is
unsatisfiable.

Furthermore, the repair interface lets the user check at any time whether all
faults (conflict sets) in the original ontology are already resolved or not. To do so,
the user just needs to select the “OK” button and check the default OntoDebug
tab. In case any of the previous faults remain or some new faults are introduced
by modifications done in the repair interface, the debugger will automatically
start a new interactive session. Otherwise, OntoDebug informs the user that the
ontology is correct.

Once the user obtains a fault-free ontology, the performed modifications can
be stored and all acquired test cases moved to the permanent ones. In this way

354 K. Schekotihin et al.

Fig. 5. Interactive ontology debugging session in OntoDebug (repair interface)

our debugger enables a continuous acquisition and maintenance of test cases,
which is very important for quality assurance in the ontology development pro-
cess. Finally, the user can continue to

(a) the ontology development stage (1) by starting the described ontology evo-
lution loop anew, or

(b) the fault detection stage (2), if new fault conjectures, i.e. test cases, arise
after the repair session, e.g. in case the user feels that some parts of the
ontology were not tested well enough.

As a final remark, note that OntoDebug does not focus on the validation of the
entire ontology, but rather pursues a symptom-driven fault repair. That is, once
a deficiency, e.g. an inconsistency or a violation of a test case, of the developed
ontology becomes evident, OntoDebug assists in restoring the ontology’s correct-
ness in terms of the given or already acquired test cases. It is a future work topic
to develop strategies for test case suggestion given an ontology that is compati-
ble with the specified criteria. Such strategies could, for instance, be guided by
logical counterparts to code smells from the field of software debugging such as
OWL antipatterns [25] or common modeling mistakes [18].

OntoDebug: Interactive Ontology Debugging Plug-in for Protégé 355

4 Settings and Hints for Proper Configuration

To ensure the best performance for various ontologies OntoDebug allows its
users to use different combinations of algorithms for the computation of minimal
conflict sets and diagnoses as well as for the generation and selection of queries.

The Fault Localization view of the plug-in settings, shown in Fig. 6, com-
prises selectors and parameters of the algorithms related to diagnoses computa-
tion tasks. OntoDebug offers three algorithms for the identification of minimal
conflict sets that have different properties. QuickXPlain [7] is a default divide-
and-conquer conflict searcher that guarantees stable performance in cases when
reasoning tasks for an ontology can be performed rather fast. MergeXPlain [30]
is an extension of QuickXPlain that works best when an ontology comprises a
number of non-intersecting minimal conflicts. In such situations, this algorithm
can find multiple conflicts at once and can be easily parallelized on multi-core
architectures. Finally, Progression [13] is an algorithm designed for situations
when reasoning for the ontology is hard. This algorithm starts with a smaller
subset of axioms and extends it until a conflict is acquired. Then, the obtained
set of axioms is minimized. However, on simpler ontologies with fewer faults it
shows a slower performance than QuickXPlain.

Computation of diagnoses in OntoDebug can be done using two algorithms,
namely HS-Tree [19] (default) and Inv-HS-Tree [29]. The first algorithm imple-
ments a breadth-first or uniform-cost search for diagnoses via the computation
of minimal conflict sets. HS-Tree is the best choice if an ontology comprises
a small number of minimal conflicts with only a few axioms each. This case
can be met in practice when a user tests the developed version of an ontol-
ogy regularly for incompatibility with the specified requirements. The second
algorithm, Inv-HS-Tree, computes diagnoses directly and does not rely on the
computation of conflict sets. As a consequence, this diagnosis engine can leverage
a linear-space depth-first search method which comes, however, at the cost of
not guaranteeing a best-first computation of the minimal diagnoses. Therefore,
the user should prefer this algorithm if the ontology comprises large numbers of
high-cardinality faults, like in cases of ontologies output by automatic alignment
approaches. In ontology development scenarios the performance of this algorithm
tends to be inferior to HS-Tree.

Furthermore, this tab allows to select the preference measure for the diagno-
sis computation, such as cardinality of diagnoses, probability, or no preference
(equal costs). At the moment, our framework by default ranks diagnoses that
comprise fewer axioms higher, reflecting the situation where no bias concerning
the fault probability of axioms in the ontology is given. That is, the minimally
invasive solutions are presented to the user first. The probability-based measures
and the specification of respective user profiles are implemented in the back-end,
but the user interface is still in work.

The Query Computation view allows the user to choose the query selection
measure out of Entropy [10], Split-in-Half [28] and Dynamic Risk (which is called
RIO in the original publication [24]). The first strategy prefers queries that yield
a maximal information gain given an answer of the user. The second one always

356 K. Schekotihin et al.

Fig. 6. Preferences views of OntoDebug

selects queries which ensure that a half of the (known) diagnoses of the current
DPI are no longer diagnoses of the next DPI, regardless of the user’s answer.
Dynamic Risk is a parameterized measure that is automatically adapted by
reinforcement learning based on the diagnoses elimination performance achieved.
It combines the two previous measures to find the golden mean between the
stability of Split-in-Half and the ability of Entropy to make risky decisions,
where “risky” refers to the exploitation of possibly vague or misleading prior
probabilities.

Finally, a user can specify the preferences for queries in terms of their car-
dinality (MinCard), overall syntactical complexity of the axioms used in the
query (MinSum), and the complexity of the most syntactically complex axiom
in a query (MinMax). Furthermore, the user can decide whether queries must
be enriched by computing additional entailments. This feature is recommended
since it can significantly improve the understandability of queries, but should be
avoided if the computation of entailments is hard.

5 Conclusions

In this paper we presented OntoDebug – an interactive ontology debugging
plug-in for Protégé. Our approach implements all tasks relevant to fault detec-
tion, localization and repair. The interactive debugging technique significantly
reduces the burden of fault localization by hiding analysis and comparison of
different fault explanations behind a query interface. The user of OntoDebug is

OntoDebug: Interactive Ontology Debugging Plug-in for Protégé 357

only required to use her domain knowledge to answer questions of the debugger
regarding entailments and non-entailments of the intended ontology. Finally, the
possibility to define and maintain test cases and automatically acquire new ones
in the course of a debugging session makes it possible for the first time to apply
a test-driven methodology for ontology development and thus to improve the
quality of the final ontology.

References

1. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. J. Log. Comput.
20(1), 5–34 (2010)

2. Ceraso, J., Provitera, A.: Sources of error in syllogistic reasoning. Cogn. Psychol.
2(4), 400–410 (1971)

3. Friedrich, G., Shchekotykhin, K.: A general diagnosis method for ontologies. In: Gil,
Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 232–246. Springer, Heidelberg (2005). https://doi.org/10.1007/11574620 19

4. Horridge, M.: Justification based explanation in ontologies. Ph.D. thesis, University
of Manchester (2011)

5. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In:
Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan,
K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-88564-1 21

6. Johnson-Laird, P.N.: Deductive reasoning. Annu. Rev. Psychol. 50, 109–135 (1999)
7. Junker, U.: QUICKXPLAIN: preferred explanations and relaxations for over-

constrained problems. In: AAAI 2004, vol. 3, pp. 167–172 (2004)
8. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of

OWL DL entailments. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS,
vol. 4825, pp. 267–280. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-76298-0 20

9. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C., Hendler, J.A.: Swoop: a web
ontology editing browser. J. Web Semant. 4(2), 144–153 (2006)

10. de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artif. Intell. 32(1), 97–130
(1987)

11. Korf, R.E.: A complete anytime algorithm for number partitioning. Artif. Intell.
106(2), 181–203 (1998)

12. Lehmann, J., Bühmann, L.: ORE - a tool for repairing and enriching knowledge
bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan,
J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6497, pp. 177–193.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17749-1 12

13. Marques-Silva, J., Janota, M., Belov, A.: Minimal sets over monotone predicates
in Boolean formulae. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol.
8044, pp. 592–607. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39799-8 39

14. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics.
J. Artif. Intell. Res. 36, 165–228 (2009)

15. Musen, M.A., The Protégé Team: The protégé project: a look back and a look
forward. AI Matters 1(4), 4–12 (2015)

https://doi.org/10.1007/11574620_19
https://doi.org/10.1007/978-3-540-88564-1_21
https://doi.org/10.1007/978-3-540-76298-0_20
https://doi.org/10.1007/978-3-540-76298-0_20
https://doi.org/10.1007/978-3-642-17749-1_12
https://doi.org/10.1007/978-3-642-39799-8_39
https://doi.org/10.1007/978-3-642-39799-8_39

358 K. Schekotihin et al.

16. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proceedings
of 14th international conference on WWW, pp. 633–640. ACM (2005)

17. Qi, G., Hunter, A.: Measuring incoherence in description logic-based ontologies.
In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 381–394.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0 28

18. Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens,
R., Wang, H., Wroe, C.: OWL pizzas: practical experience of teaching OWL-DL:
common errors & common patterns. In: Motta, E., Shadbolt, N.R., Stutt, A.,
Gibbins, N. (eds.) EKAW 2004. LNCS, vol. 3257, pp. 63–81. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30202-5 5

19. Reiter, R.: A Theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

20. Rodler, P.: Interactive debugging of knowledge bases. Ph.D. thesis, Alpen-Adria
Universität Klagenfurt (2015). http://arxiv.org/pdf/1605.05950v1.pdf

21. Rodler, P.: On active learning strategies for sequential diagnosis. In: 28th Interna-
tional Workshop on Principles of Diagnosis (DX 2017). Kalpa Publications in Com-
puting, vol. 4, pp. 264–283. EasyChair (2018). https://easychair.org/publications/
paper/zHgj

22. Rodler, P., Schekotihin, K.: Reducing model-based diagnosis to knowledge base
debugging. In: 28th International Workshop on Principles of Diagnosis (DX 2017).
Kalpa Publications in Computing, vol. 4, pp. 284–296. EasyChair (2018). https://
easychair.org/publications/paper/3g9Q

23. Rodler, P., Schmid, W., Schekotihin, K.: Inexpensive cost-optimized measurement
proposal for sequential model-based diagnosis. In: 28th International Workshop on
Principles of Diagnosis (DX 2017). Kalpa Publications in Computing, vol. 4, pp.
200–218. EasyChair (2018). https://easychair.org/publications/paper/HhPf

24. Rodler, P., Shchekotykhin, K., Fleiss, P., Friedrich, G.: RIO: minimizing user inter-
action in ontology debugging. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS,
vol. 7994, pp. 153–167. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39666-3 12

25. Roussey, C., Corcho, O., Vilches-Blázquez, L.M.: A catalogue of OWL ontology
antipatterns. In: International Conference on Knowledge Capture, pp. 205–206.
ACM, Redondo Beach (2009)

26. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: IJCAI-2003, Proceedings of 18th International
Joint Conference on Artificial Intelligence, Acapulco, Mexico, 9–15 August 2003,
pp. 355–362. Morgan Kaufmann (2003)

27. Schlobach, S., Huang, Z., Cornet, R., Harmelen, F.: Debugging incoherent termi-
nologies. J. Autom. Reason. 39(3), 317–349 (2007)

28. Shchekotykhin, K.M., Friedrich, G., Fleiss, P., Rodler, P.: Interactive ontology
debugging: two query strategies for efficient fault localization. J. Web Semat. 12,
88–103 (2012)

29. Shchekotykhin, K.M., Friedrich, G., Rodler, P., Fleiss, P.: Sequential diagnosis of
high cardinality faults in knowledge-bases by direct diagnosis generation. In: ECAI
2014–21st European Conference on Artificial Intelligence. Frontiers in Artificial
Intelligence and Applications, vol. 263, pp. 813–818. IOS Press (2014)

https://doi.org/10.1007/978-3-540-76298-0_28
https://doi.org/10.1007/978-3-540-30202-5_5
http://arxiv.org/pdf/1605.05950v1.pdf
https://easychair.org/publications/paper/zHgj
https://easychair.org/publications/paper/zHgj
https://easychair.org/publications/paper/3g9Q
https://easychair.org/publications/paper/3g9Q
https://easychair.org/publications/paper/HhPf
https://doi.org/10.1007/978-3-642-39666-3_12
https://doi.org/10.1007/978-3-642-39666-3_12

OntoDebug: Interactive Ontology Debugging Plug-in for Protégé 359

30. Shchekotykhin, K.M., Jannach, D., Schmitz, T.: Mergexplain: fast computation of
multiple conflicts for diagnosis. In: Proceedings of 24th International Joint Con-
ference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July
2015, pp. 3221–3228. AAAI Press (2015)

31. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. Web Semant.: Sci. Serv. Agents World Wide Web 5(2), 51–53 (2007)

32. Struss, P.: Model-based problem solving. In: Handbook of Knowledge Representa-
tion, Foundations of Artificial Intelligence, vol. 3, pp. 395–465. Elsevier (2008)

A Framework for Comparing Query
Languages in Their Ability to Express

Boolean Queries

Dimitri Surinx1(B), Jan Van den Bussche1, and Dirk Van Gucht2

1 Hasselt University, Hasselt, Belgium
{dimitri.surinx,jan.vandenbussche}@uhasselt.be

2 Indiana University, Bloomington, IN, USA
vgucht@cs.indiana.edu

Abstract. We identify three basic modalities for expressing boolean
queries using the expressions of a query language: nonemptiness, empti-
ness, and containment. For the class of first-order queries, these three
modalities have exactly the same expressive power. For other classes of
queries, e.g., expressed in weaker query languages, the modalities may
differ in expressiveness. We propose a framework for studying the expres-
sive power of boolean query modalities. Along one dimension, one may
work within a fixed query language and compare the three modalities,
e.g., we can compare a fixed query language F under emptiness to F
under nonemptiness. Here, we identify crucial query features that enable
us to go from one modality to another. Furthermore, we identify seman-
tical properties that reflect the lack of these query features to establish
separations. Along a second dimension, one may fix a modality and com-
pare different query languages. This second dimension is the one that has
already received quite some attention in the literature, whereas in this
paper we emphasize the first dimension. Combining both dimensions,
it is interesting to compare the expressive power of a weak query lan-
guage using a strong modality, against that of a seemingly stronger query
language but perhaps using a weaker modality. We present some initial
results within this theme. As an important auxiliary result, we estab-
lish a preservation theorem for monotone containments of conjunctive
queries.

1 Introduction

When a relational database is queried, the result is normally a relation. Some
queries, however, only require a yes/no answer; such queries are often called
boolean queries. We may ask, for example, “is student 14753 enrolled in course
c209?” Also, every integrity constraint is essentially a boolean query. Another
application of boolean queries is given by SQL conditions, as used in updates
and triggers, or in if-then-else statements of SQL/PSM (PL/SQL) programs.

In the theory of database query languages and in finite model theory [1–
4], it is standard practice to express boolean queries under what we call the
c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 360–378, 2018.
https://doi.org/10.1007/978-3-319-90050-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_20&domain=pdf

A Framework for Comparing Query Languages 361

nonemptiness modality. Under this modality, boolean queries are expressed in the
form e �= ∅ where e is a query expression in some query language. For example,
under the nonemptiness modality, the above boolean query “is student 14753
enrolled in course c209?” is expressed by the nonemptiness of the query “give
all students with id 14753 that are enrolled in course c209”. The nonemptiness
modality is used in practice in the query language SPARQL. In that language,
the result of a boolean query ASK P is true if and only if the corresponding
query SELECT * P has a nonempty result. Another example of the nonemptiness
modality in practice is given by SQL conditions of the form EXISTS (Q).

Sometimes, however, an integrity constraint is more naturally expressed by
a query that looks for violations; then the constraint holds if the query returns
no answers. So, here we use the emptiness modality rather than nonemptiness.
For example, to express the integrity constraint that students can be enrolled
in at most ten courses, we write a query retrieving all students enrolled in more
than ten courses. The query must return an empty result; otherwise an error is
raised. SQL conditions of the form NOT EXISTS (Q), instrumental in formulat-
ing nonmonotone queries, obviously use the emptiness modality.

Yet another natural modality is containment of the form e1 ⊆ e2, where e1
and e2 are two query expressions. This boolean query returns true on a database
D if e1(D) is a subset of e2(D).1 For example, the integrity constraint “every stu-
dent taking course c209 should have passed course c106” is naturally expressed
by e1 ⊆ e2, where e1 is the query retrieving all students taking c209 and e2 is the
query retrieving all students that passed c106. An embedded tuple-generating
dependency [1,6] can be regarded as the containment of two conjunctive queries.
Similarly, an equality-generating dependency can be regarded as the containment
of a conjunctive query in the query returning all identical pairs of data elements.

This brings us to the main motivation of this paper: by using the containment
modality, one can use a weaker query language, such as conjunctive queries, and
still be able to express integrity constraints that would not be expressible in the
language using, say, the nonemptiness modality. A weaker language is easier to
use and queries can be executed more efficiently. We find it an intriguing question
how different modalities compare to each other, under different circumstances
depending on the query language at hand. Furthermore, one may want to com-
pare the expressiveness of different query languages across different modalities
for expressing boolean queries. Moreover, we can observe that the emptiness
modality is simply the negation of the nonemptiness modality. Inspired by this,
we are interested in understanding under what circumstances the containment

1 In this paper, e1 ⊆ e2 stands for a boolean query which, in general, may return
true on some databases and return false on the other databases. Thus e1 ⊆ e2 as
considered in this paper should not be misconstrued as an instance of the famous
query containment problem [1,5], where the task would be to verify statically if
e1(D) is a subset of e2(D) on every database D. Indeed, if e1 is contained in e2 in
this latter sense, then the boolean query e1 ⊆ e2 is trivial as it returns true on every
database.

362 D. Surinx et al.

modality is closed under negation, or under other boolean connectives such as
conjunction.

We can illustrate the above questions using well-known simple examples.

Example 1. A referential integrity constraint (inclusion dependency) is clearly
expressible by a containment of conjunctive queries (CQs), but not by the
nonemptiness of a CQ. This is simply because CQs are monotone, whereas an
inclusion dependency is not. On the other hand it is neither expressible by the
emptiness of a CQ, because such boolean queries are antimonotone whereas
again inclusion dependencies are not.

For another example, a key constraint (functional dependency, FD) is again
not monotone, so again not expressible by the nonemptiness of a monotone
query. An FD is, however, naturally expressed by the emptiness of a CQ with
nonequalities. For example, a relation R(A,B,C) satisfies the FD A → B if and
only if the result of

() ← R(x, y1, z1), R(x, y2, z2), y1 �= y2

is empty. An FD is also expressible as a containment of two CQs. For example,
the above FD holds if and only if the containment

(x, y1, y2) ← R(x, y1, z1), R(x, y2, z2) ⊆ (x, y, y) ← R(x, y, z)

is satisfied. ��
In this paper, we attack the above questions from several angles. We begin by

comparing the three basic modalities: emptiness, nonemptiness, containment, in
the general context of an arbitrary query language. In such a context it is possible
to formulate sufficient conditions for, say, emptiness queries to be convertible to
nonemptiness queries, or nonemptiness queries to be convertible to containment
queries. For example, if we have a sufficiently powerful query language that can
express cylindrification and complementation, such as full first-order logic, then
it does not really matter which boolean query modality one uses. Conversely, we
also formulate some general properties of query languages, like monotonicity or
additivity, that preclude the conversion of one modality into another.

Our second angle is to consider a range of specific query languages and char-
acterize how the different modalities compare to each other, for each language
in this range. It would be very natural to do this for Codd’s relational algebra,
where we obtain a range of fragments by varying the allowed operations. For
example, we may allow attribute renaming or not, or we may allow set differ-
ence or not. While such an investigation remains to be done, in this paper, we
have opted to work with the algebra of binary relations. This algebra can be
seen as a more controlled setting of the relational algebra, and also serves as a
well-established and adopted formalization of graph query languages [7–14]. We
will completely characterize how the different boolean query modalities compare
for each fragment of the algebra of binary relations. Apart from this algebra, we
will also look at the popular class of conjunctive queries under the light of the
three boolean query modalities.

A Framework for Comparing Query Languages 363

Our third angle is to investigate how the expressiveness of two different query
languages can be compared when using a different modality for each language.
One can, for example, compare a stronger language under the weak emptiness
modality, to a weak language under the stronger containment modality. The FD
example in Example 1 clearly follows this pattern. In this theme we offer a general
preservation theorem for monotone containments of CQs: these boolean queries
are exactly the nonemptiness CQs. Using this result, and earlier results on the
nonexpressibility of certain nonemptiness queries [15], we can show separations
between the nonemptiness modality and the containment modality for different
fragments of the algebra of binary relations. There remain some open problems
in this theme, which we will summarize.

Finally, we look at the question of when a class of boolean queries is closed
under conjunction, or under negation. Especially the question of closure under
conjunction for boolean queries expressed as containments is very interesting
with some open problems remaining.

Several proofs have been omitted due to space limitations, and will be
included in a following journal publication.

Previous Work. In our previous work we have compared the expressive power
of fragments of the algebra of binary relations under the nonemptiness modality
[15–17] and under the containment modality [18]. The present paper is comple-
mentary in that it emphasizes the comparison of different boolean query modal-
ities, for fixed fragments or across fragments.

2 Preliminaries

A database schema S is a finite nonempty set of relation names. Every relation
name R is assigned an arity, which is a natural number. Assuming some fixed
infinite universe of data elements V , an instance I of a relation name R of arity
k is a finite k-ary relation on V , i.e., a subset of V k = V × · · · × V (k times).
More generally, an instance I of a database schema S assigns to each R ∈ S an
instance of R, denoted by I(R). The active domain of an instance I, denoted by
adom(I), is the set of all data elements from V that occur in I. For technical
reasons we exclude the empty instance, i.e., one of the relations in I must be
nonempty. Thus, adom(I) is never empty.

For a natural number k, a k-ary query over a database schema S is a function
that maps each instance I of S to a k-ary relation on adom(I). We require queries
to be generic [1]. A query q is generic if for any permutation f of the universe
V , and any instance I, we have q(f(I)) = f(q(I)).

We assume familiarity with the standard relational query languages such as
first-order logic, relational algebra, conjunctive queries [1].

364 D. Surinx et al.

2.1 Tests, Cylindrification, Complementation

Let q1 and q2 be queries over a common database schema. We define the query
(q1 if q2) as follows:

(q1 if q2)(I) =

{
q1(I) if q2(I) �= ∅;
∅ otherwise.

Naturally, we say that a family F of queries over a common database schema
is closed under tests if for any two queries q1 and q2 in F , the query (q1 if q2) is
also in F .

Cylindrification is an operation on relations that, like projection, corresponds
to existential quantification, but, unlike projection, does not reduce the arity of
the relation [19,20]. We introduce an abstraction of this operation as follows.
For any natural number k and query q, we define the k-ary cylindrification of
q, denoted by γk(q), as follows:

γk(q)(I) =

{
adom(I)k if q(I) �= ∅;
∅ otherwise.

We say that a family F of queries over a common database schema is closed
under k-ary cylindrification (k ≥ 1) if for any query q ∈ F , the query γk(q) is
also in F .

Example 2. Let S be a schema with two ternary relations R and T , and let q be
the 3-ary query that maps any instance I over S to I(R) − I(T). Then, γ1(q)
is the unary query that maps any instance I over S to adom(I) if I(R) �⊆ I(T)
and to ∅ otherwise. ��

For a k-ary query q, the complement of q, denoted by qc, is defined by qc(I) =
adom(I)k−q(I) (set difference). We say that a family F of queries over a common
database schema is closed under k-complementation if for any query q ∈ F of
arity k, the query qc is also in F .

Finally, we say that a family F of queries over a common database schema
is closed under set difference if for any two queries q1, q2 ∈ F of the same arity,
the query q that maps instances I onto q1(I) − q2(I) is also in F .

2.2 Navigational Graph Query Languages

Some of the results in this paper concern graph databases, corresponding with
the case where the database schema S is restricted to only binary relation names.
Any instance I of S can be considered as a graph, where the elements of the
active domain are considered as nodes, the pairs in the binary relations are
directed edges, and the relation names are edge labels.

The most basic language we consider for expressing binary queries over
graphs is the algebra NS . The expressions of this algebra are built recursively
from the relation names in S and the primitives ∅ and id, using the operators

A Framework for Comparing Query Languages 365

composition (e1 ◦ e2) and union (e1 ∪ e2). Semantically, each expression denotes
a query in the following way.

id(G) = {(m,m) | m ∈ adom(G)}
R(G) = G(R) for relation name R ∈ S

∅(G) = ∅
e1 ◦ e2(G) = {(m,n) | ∃p : (m, p) ∈ e1(G) ∧ (p, n) ∈ e2(G)}
e1 ∪ e2(G) = e1(G) ∪ e2(G).

Although the assumption of a basic language is a point of discussion, it can be
argued that our choice of basic language is not unreasonable [18].

The basic algebra NS can be extended by adding some of the following fea-
tures: the primitives diversity (di), and the full relation (all); and the operators
converse (e−1), intersection (e1 ∩ e2), set difference (e1 − e2), projections (π1(e)
and π2(e)), coprojections (π1(e) and π2(e)), and transitive closure (e+). We refer
to the operators in the basic algebra as basic features; we refer to the extensions
as nonbasic features. The semantics of the extensions are as follows:

di(G) = {(m,n) | m,n ∈ adom(G) ∧ m �= n}
all(G) = {(m,n) | m,n ∈ adom(G)}

e−1(G) = {(m,n) | (n,m) ∈ e(G)}
e1 ∩ e2(G) = e1(G) ∩ e2(G)
e1 − e2(G) = e1(G) − e2(G)

π1(e)(G) = {(m,m) | m ∈ adom(G) ∧ ∃n : (m,n) ∈ e(G)}
π2(e)(G) = {(m,m) | m ∈ adom(G) ∧ ∃n : (n,m) ∈ e(G)}
π1(e)(G) = {(m,m) | m ∈ adom(G) ∧ ¬∃n : (m,n) ∈ e(G)}
π2(e)(G) = {(m,m) | m ∈ adom(G) ∧ ¬∃n : (n,m) ∈ e(G)}

e+(G) = the transitive closure of e(G).

All the above operators are well-established in so-called “navigational” graph
querying [10–14].

A fragment is any set F of nonbasic features, in which we either take both
projections π1 and π2 or none of them, and the same for coprojection.2

If F is a fragment, we denote by NS(F) the language obtained by adding the
features in F to NS . For example, NS(∩) denotes the extension with intersection,
and NS(∩, π) denotes the extension with intersection and both projections. We
will omit the subscript S in NS(F) when the precise database schema is not of
importance.

2 Some of our results can be refined to fragments containing just one of the two
projections or coprojections, but for others this remains a technical open problem
[21].

366 D. Surinx et al.

Various interdependencies exist between the nonbasic features [12]:

all = di ∪ id

di = all − id

e1 ∩ e2 = e1 − (e1 − e2)

π1(e) = (e ◦ e−1) ∩ id = (e ◦ all) ∩ id = π1(π1(e)) = π2(e−1)

π2(e) = (e−1 ◦ e) ∩ id = (all ◦ e) ∩ id = π2(π2(e)) = π1(e−1)
π1(e) = id − π1(e)
π2(e) = id − π2(e)

For example, by the third equation, when we add difference, we get intersec-
tion for free. The closure of a fragment F by the above equations is denoted by
F . For example, {−, di} = {−, di, all,∩, π, π}. Clearly F and F are equivalent in
expressive power. This closure notation will be used extensively in what follows.

3 Boolean Query Modalities

A boolean query over a database schema S is a mapping from instances of S to
{true, false}. As argued in the Introduction, boolean queries can be naturally
expressed in terms of the emptiness, or the nonemptiness, of an ordinary query,
or by the containment of the results of two queries. Using these three base
modalities we can associate an array of boolean query families to any family of
queries F on a common database schema S:

family of boolean queries expressible in the form with

F=∅ q = ∅ q ∈ F
F �=∅ q �= ∅ q ∈ F
F⊆ q1 ⊆ q2 q1, q2 ∈ F

For F⊆, it is understood that only two queries of the same arity can form a
containment boolean query.

When working in the algebra of binary relations, for any fragment F of
nonbasic features, we abbreviate N (F)=∅, N (F)�=∅ and N (F)⊆ by F=∅, F �=∅

and F⊆, respectively.
Obviously, these are by no means the only way to express boolean queries.

We could, for example, allow boolean connectives within a family of boolean
queries. Indeed, we can consider boolean queries of the form q1 �= ∅∧ . . .∧qn �= ∅
where qi �= ∅ ∈ F �=∅ where i = 1, . . . , n. Furthermore, we could even combine two
different families of boolean queries by using boolean connectives. For example,
we can consider boolean queries of the form q1 �= ∅∧q2 ⊆ q3 where q1 �= ∅ ∈ F �=∅

and q2 ⊆ q3 ∈ F⊆. Our goal in this paper is to propose a framework along which
we can investigate and compare different ways of expressing boolean queries.

A Framework for Comparing Query Languages 367

4 Comparing the Modalities

The goal of this section is to compare F=∅, F �=∅ and F⊆, for a fixed family of
queries (modeling a query language) F . Formally, this amounts to making six
comparisons, but we can immediately get one of them out of the way by noting
that F=∅ is the negation of F �=∅.

Formally, for a boolean query q, we define its negation ¬q naturally as
(¬q)(I) = ¬q(I), where ¬true = false and ¬false = true. For a family of boolean
queries A, we define its negation ¬A as {¬q | q ∈ A}.

Now clearly A ⊆ B if and only if ¬A ⊆ ¬B. Hence, we only have to investigate
whether F=∅ ⊆ F �=∅; the other direction F �=∅ ⊆ F=∅ then directly follows. This
amounts to investigating when the emptiness modality is closed under negation.
Formally, a family B of boolean queries is called closed under negation if ¬B ⊆ B
(or, equivalently, B ⊆ ¬B). Note that we define closure under negation seman-
tically, it thus applies to any family of boolean queries, so it is not a syntactic
definition as it would apply to a query language. (e.g., formulas that do not use
certain operators or connectives like difference or logical negation)

We first identify query features that enable the expression of one base modal-
ity in terms of another one. We also identify general properties that reflect the
absence of these query features, notably, the properties of monotonicity and
additivity. We then observe how these properties indeed prevent going from one
modality to another.

The announced query features are summarized in the following theorem. We
leave out the comparison F⊆ ⊆ F �=∅, since we know of no other general way of
going from containment to nonemptiness than via emptiness F⊆ ⊆ F=∅ ⊆ F �=∅.
This leaves four comparisons, dealt with in the following theorem. We refer to
the notions introduced in Sect. 2.1.

Theorem 1. Let F be a family of queries.

1. F⊆ ⊆ F=∅ if F is closed under set difference (−).
2. F=∅ ⊆ F �=∅ if there exists k such that F is closed under

– k-ary complementation, and
– k-ary cylindrification.

3. F �=∅ ⊆ F⊆ if
– F contains a never-empty query (one that returns nonempty on every

instance), and
– F is closed under tests, or F is closed under k-ary cylindrification for

some k.
4. F=∅ ⊆ F⊆ if F contains the empty query which always outputs the empty

relation.

Proof. 1. q1 ⊆ q2 is expressed by q1 − q2 = ∅.
2. q = ∅ is expressed by γk(q)c �= ∅.
3. Let p be a never-empty query. Then q �= ∅ is expressed by p ⊆ (p if q) as well

as by γk(p) ⊆ γk(q).
4. q = ∅ is expressed by q ⊆ empty. ��

368 D. Surinx et al.

Obviously, the above theorem only provides sufficient conditions under which
we can go from one modality to another. Since the conditions hold for any general
family F , we cannot expect the literal converses of these statements to hold in
general. Indeed, one could always concoct an artificial family F that is not closed
under set difference but for which F⊆ ⊆ F=∅.

Example 3. Over a schema with two unary relation names R and S, let F be
the set of queries

if C then e1 else e2

with C finite boolean combinations of expressions hi ⊆ hj and e1, e2, hi, hj in
{∅, R, S,R ∪ S}. It can be verified that F⊆ ⊆ F=∅, and that F is not closed
under difference. ��

Our approach to still find a kind of converse of Theorem1, is to come up
with general semantic properties of the queries in a family that would prevent
the sufficient conditions to hold. We can then proceed to show that the different
modalities become incomparable under these properties.

More concretely, we can observe two main themes in the sufficient conditions:
negation, in the forms of set difference and complementation, and global access
to the database, in the forms of cylindrification and tests. A well-known semantic
property of queries that runs counter to negation is monotonicity. Global access is
an intuitive notion. As a formal property that intuitively prevents global access,
we propose additivity.

4.1 Monotonicity

A query q is monotone if I ⊆ J implies q(I) ⊆ q(J), where I ⊆ J means that
I(R) ⊆ J(R) for each relation name R. In Theorem 1, we have seen that closure
under complementation or set difference, which typically destroys monotonicity,
is instrumental for the emptiness modality to be closed under negation, as well
as the containment modality to be subsumed by emptiness. We next show that
both fail under monotonicity.

The first failure is the strongest:

Lemma 1. Let MON denote the family of monotone queries. The only boolean
queries in MON=∅ ∩ MON�=∅ are the constant true and false queries.

As a corollary, we obtain:

Proposition 1. Let F be a family of monotone queries. As soon as F=∅ con-
tains a non-constant query, F=∅ �⊆ F �=∅.

This also implies that for any monotone family of queries F that contains
the empty query, we have F⊆ �⊆ F �=∅, since A=∅ ⊆ A⊆ for any family of queries
A that contains the empty query. We will apply Proposition 1 to conjunctive
queries in Sect. 4.3.

We next turn to the failure of going from containment to emptiness. When-
ever q is monotone, the boolean query q = ∅ is antimonotone (meaning that if

A Framework for Comparing Query Languages 369

q(I) = false and I ⊆ J , also q(J) = false). However, a boolean containment
query is typically not antimonotone. The following straightforward result gives
two examples.

Proposition 2. Let F be a family of monotone queries over a database schema
S.

1. If S contains two distinct relation names R and T of the same arity, and
the two queries R and T belong to F , then F⊆ �⊆ F=∅. This is shown by the
boolean query R ⊆ T .

2. If R is a binary relation name in S and the two queries R ◦ R and R belong
to F , then F⊆ �⊆ F=∅.

4.2 Additivity

A query q is additive if for any two instances I and J such that adom(I) and
adom(J) are disjoint, q(I ∪ J) = q(I) ∪ q(J). Additive queries (also known
as “queries distributing over components”) have been recently singled out as a
family of queries that are well amenable to distributed computation [22]. Indeed,
additivity means that a query can be separately computed on each connected
component, after which all the subresults can simply be combined by union to
obtain the final result.

Both cylindrification and tests run counter to additivity. For example, just
computing adom(I) × adom(I) is not additive. Also tests of the form (q1 if q2)
are not additive, since testing if q2 is nonempty takes part in the entire instance,
across connected components. We have seen that cylindrification (together with
complementation) can be used to close the emptiness modality under negation;
moreover, cylindrification or tests suffice to move from nonemptiness to contain-
ment. We next show that this all fails under additivity.

The following lemma is of a similar nature as Lemma 1.

Lemma 2. Let ADD denote the family of additive queries. The only boolean
queries in ADD �=∅ ∩ ADD⊆ are the constant true and false queries.

As a corollary, we obtain:

Proposition 3. Let F be a family of additive queries.

1. As soon as F⊆ contains a non-constant query, F⊆ �⊆ F �=∅.
2. As soon as F �=∅ contains a non-constant query, F �=∅ �⊆ F⊆ and F=∅ �⊆ F �=∅.

Additivity and monotonicity are orthogonal properties. For example, the
additive queries are closed under set difference. Thus, additive queries may
involve negation and need not be monotone. On the other hand, computing
the Cartesian product of two relations is monotone but not additive.

370 D. Surinx et al.

4.3 Conjunctive Queries

In this brief section we compare the three base modalities for the popular lan-
guages CQ (conjunctive queries) and UCQ (unions of conjunctive queries). The
result is that nonemptiness is strictly subsumed by containment, and that all
other pairs of modalities are incomparable.

Theorem 2. Let F be CQ or UCQ. Then

1. F⊆ �⊆ F=∅ and F=∅ �⊆ F⊆.
2. F=∅ �⊆ F �=∅.
3. F �=∅ ⊆ F⊆.
4. F⊆ �⊆ F �=∅.

Proof. 1. Consider the instance Z where Z(R) = {(1, . . . , 1)} for each relation
R. Every query in F⊆ returns true on Z, whereas every query in F=∅ returns
false.

2. By Proposition 1.
3. By Theorem 1(3). Indeed, a CQ with an empty body is never empty. CQs and

UCQs are also closed under tests. Indeed, let q1 and q2 be UCQs. Then (q1 if
q2) is expressed by the UCQ consisting of the following rules. Take a rule r of
q1 and a rule s of q2. Produce the rule obtained from r by conjoining to the
body a variable-renamed copy of the body of s. If q1 has n rules and q2 has
m rules, we obtain nm rules. In particular, if q1 and q2 are CQs, we obtain a
single rule so again a CQ.

4. Let R be a relation name in the database schema, and consider the two queries

q1(x, y) ← R(x, , . . . ,), R(y, , . . . ,)
q2(x, x) ← R(x, , . . . ,).

Here, the underscores stand for fresh nondistinguished variables (Prolog nota-
tion). Then q1 ⊆ q2 returns true on an instance I iff the first column of R(I)
holds at most one distinct element. This boolean query is not monotone and
thus not in F �=∅. ��

Remark 1. In the proof of Theorem2(4) we make convenient use of repeated
variables in the head. For the version of CQs where this is disallowed, the result
can still be proven by using

q1(x1, . . . , xk) ← R(x1, . . . , xk)
q2(x1, . . . , xk) ← R(x1, . . . , xk), R(xk, , . . . ,).

This does not work if R is unary; if there are two different relation names R and
T , we can use

q1(x) ← R(x, , . . . ,)
q2(x) ← T (x, . . . ,).

A Framework for Comparing Query Languages 371

These arguments only fail when the database schema consists of just one single
unary relation name, and we cannot use repeated variables in the head. In this
extreme case, both CQ⊆ and CQ�=∅ consist only of the constant true query, so
the subsumption becomes trivial. ��

4.4 Navigational Graph Query Languages

In this section we compare the three base modalities for the navigational graph
query languages introduced in the Preliminaries.

The results are summarized in the following theorem. This theorem can be
seen as a version of our earlier Theorem 1, specialized to navigational graph
query language fragments. However, now, every statement is a characterization,
showing that the sufficient condition is also necessary for subsumption to hold.
Particularly satisfying is that, with a few exceptions, almost the entire theorem
can be proven from the general results given earlier.

Theorem 3. Let F be a fragment.

1. F⊆ ⊆ F=∅ if and only if − ∈ F .
2. F=∅ ⊆ F �=∅ if and only if all ∈ F and (− ∈ F or π ∈ F).
3. F �=∅ ⊆ F⊆ if and only if all ∈ F .
4. F⊆ ⊆ F �=∅ if and only if all ∈ F and − ∈ F .

Notice that Theorem 3 no longer contains an adapted version for Theo-
rem 1(4). This is because the empty query is in N (F) for any fragment F
by definition, whence F=∅ ⊆ F⊆ always holds. Instead, we now do provide in
item 4 an explicit characterization for when the subsumption from containment
to nonemptiness holds.

In every part of the above theorem, the if-direction is proven by showing that
N (F) fulfills the conditions of Theorem1.

To prove the only-if directions of the theorem, we will exhibit inexpressibility
results.

For the first part of the theorem, it is sufficient to show that F⊆ is not sub-
sumed by F=∅ for every fragment F without set difference. Thereto we intro-
duce NoDiff, the largest fragment without set difference, which is defined as
{di, −1,∩, π,+}. The following lemma establishes the first part of the theorem
by exhibiting, for every fragment F , a boolean query in F⊆ but not in NoDiff=∅.

Lemma 3. Let R be a relation schema in S. Then the boolean query “R is
transitive”, formally, R ◦ R ⊆ R, is neither in NoDiff=∅ nor in NoDiff �=∅.

The only-if directions of the remaining parts of the theorem all revolve around
the fragment NoAll = {−1,−,+}, the largest fragment without the full relation
all. This fragment lacks the only two features (di and all) that allow to jump
from one connected component to another. Hence we obtain the following:

Additivity Lemma. Every binary-relation query in N (NoAll) is additive.

372 D. Surinx et al.

This lemma can be proven directly but also follows from the additivity of
connected stratified Datalog [22].

The Additivity Lemma allows an easy proof for the second and third parts
of the theorem, as we next demonstrate. Also the proofs of several later results
hinge upon additivity.

For the second part, we must prove that F=∅ is not subsumed by F �=∅ for
any fragment F without all, as well as any fragment having neither difference nor
coprojection. The latter case is clear. Indeed, difference and coprojection are the
only two nonmonotone operators. Thus N (F) is monotone, whence Proposition 1
proves the result.

For a fragment F without all but possibly with difference or coprojection, we
have that N (F) is additive. Hence, Proposition 3 establishes the second as well
as the third parts when all �∈ F .

Finally, for the fourth part, we must prove that F⊆ is not subsumed by F �=∅

for any fragment F without all or without set difference. The case without set
difference already follows from Lemma 3. The case without all already follows
from the second part.

Regular Path Queries. The fragment {+} corresponds to a well known family
of graph queries called regular path queries (RPQ) [23]. Theorem 3 directly tells
us that RPQ=∅ �⊆ RPQ�=∅, RPQ⊆ �⊆ RPQ=∅ and RPQ⊆ �⊆ RPQ�=∅.

5 Cross-Language Comparisons

In the previous section, we have compared different modalities within a given
family of queries (query language). Dually, one may investigate how different
query languages compare for a given modality. In the context of navigational
graph query languages, we have already done this research [15,18].

The next step, then, is to see how different query languages relate when
using different modalities. In this paper, we investigate how F �=∅

1 compares to
F⊆
2 , for different navigational graph query language fragments F1 and F2. This

question is interesting especially since nonemptiness is the standard modality
for expressing boolean queries, and containment is a fundamentally different but
also very natural modality. Then it is interesting to try to understand to what
extent the containment modality, using some language F2, can be used to express
nonemptiness queries using some other language F1.

Example 4. For a positive example, consider the query R2 ◦ R−1 ◦ R2 �= ∅ in
{−1}�=∅. This query is expressed by all ⊆ all ◦ π1(R2 ◦ π2(π1(R2) ◦ R)) ◦ all in
{π, all}⊆. For a negative example, we can show that R2 ◦ R−1 ◦ R2 �= ∅ is not in
{all}⊆. ��

Whenever we can move from F1 to F2 staying with the nonemptiness modal-
ity, i.e., F �=∅

1 ⊆ F �=∅
2 , and moreover, we can switch from nonemptiness to contain-

ment within F2, i.e., F �=∅
2 ⊆ F⊆

2 , we obviously obtain F �=∅
1 ⊆ F⊆

2 by transitivity.
Actually, our conjecture is that nothing else can happen:

A Framework for Comparing Query Languages 373

Conjecture 1. Let F1 and F2 be fragments. If F �=∅
1 ⊆ F⊆

2 , then F �=∅
2 ⊆ F⊆

2 and
F �=∅
1 ⊆ F �=∅

2 .

We can prove large parts of this conjecture; the only open case revolves
around the fragments F1 = {π} and F2 ⊆ {di, all, −1,+}. In particular, if one
could show that

{π}�=∅ �⊆ {di, −1,+}⊆

then Conjecture 1 would be entirely resolved.
It is sufficient to prove the conjecture under the following two assumptions:

– If F �=∅
2 �⊆ F⊆

2 , our proof of Theorem3(3) actually implies N �=∅ �⊆ F⊆
2 (recall

that N is the most basic fragment). Hence, certainly F �=∅
1 �⊆ F⊆

2 , so the
conjecture is void in this case. Thus, we may assume that F �=∅

2 ⊆ F⊆
2 , i.e.,

that all is present in F2.
– If moreover − is in F2, then F⊆

2 = F �=∅
2 , and the conjecture becomes trivial

again. Thus, we may assume that − is not in F2.

Under the above assumptions we propose to prove the conjecture by its con-
trapositive. So we assume F �=∅

1 �⊆ F �=∅
2 and try to establish F �=∅

1 �⊆ F⊆
2 . Now the

given F �=∅
1 �⊆ F �=∅

2 has been precisely characterized in our previous work [15]. We
refer to the paper [15], which shows that F �=∅

1 �⊆ F �=∅
2 can only happen in the

following cases:

Intersection, difference, diversity, or coprojection: One of these features
is in F 1 but not in F 2.

Transitive closure: Transitive closure is in F 1 but not in F 2, and either the
database schema has at least two relation names, or F 1 contains at least one
of ∩, π or −1.

Converse: Converse is in F 1 but not in F 2, and
(a) ∩ is in F 1;
(b) + is in F 1; or
(c) F1 ⊆ {−1, di, all, π, π} and F2 ⊆ {all, di,+}.

Projection: Projection is in F 1 but not in F 2.

We can deal completely with all cases, except for projection, which we will
discuss last.

Intersection. The largest fragment for F2 we need to consider is NoInt =
{di, π, −1,+} (“no intersection”). We can show that the query R ∩ id �= ∅
(“the graph has self-loops”) is not in NoInt⊆.

Difference. We can show that R2 −R �= ∅ (“the graph is not transitive”) is not
in NoDiff⊆.

Diversity. We can show that di �= ∅ (“the graph has at least two nodes”) is not
in {all, −1, π,∩,+}⊆.

Coprojection. We can show that π1(R) �= ∅ (“the graph has at least one sink
node”) is not in {di, −1,∩,+}⊆.

374 D. Surinx et al.

Transitive closure. From our earlier work we know that F �=∅
1 can express

some query not expressible in first-order logic (FO), whereas F⊆
2 is clearly

subsumed by FO.
Converse. The largest fragment without converse is NoConv = {di, π,+,−}.

Since NoConv has both all and −, we have NoConv �=∅ = NoConv⊆. Now in
case (a), we already know [16, Proposition 6.6] that the query (R2◦R−1◦R)∩
R �= ∅ is not in NoConv �=∅. In case (b), we already know [15, Proposition 5.4]
that R2 ◦ (R ◦ R−1)+ ◦ R2 �= ∅ is not in NoConv �=∅. To settle case (c), we can
show that R2 ◦ R−1 ◦ R2 �= ∅ is not in {di,+}⊆.

A Preservation Result. In the case of projection, the largest fragment for
F2 we need to consider is {di, −1,+}. We would like to show that {π}�=∅ �⊆
{di, −1,+}⊆.

We already know [16] that there are queries in {π}�=∅ but not in {di, −1,+}�=∅.
Furthermore, note that queries in {π}�=∅ are always monotone. Hence, if we
could show that monotone queries in {di, −1,+}⊆ are always in {di, −1,+}�=∅,
the conjecture would be proved.

Note that such a result would fit the profile of a preservation theorem since it
gives a syntactical characterization for a semantical property (here monotonic-
ity). Preservation theorems have been studied intensively in model theory, finite
model theory and database theory [24–29].

We can give a partial answer in the form of the following preservation result,
which we believe to be interesting in its own right. In the following Theorem,
the conjunctive queries need not be safe. (A CQ is safe if all variables in its head
are present in its body). This is important for the application to graph queries
in the corollary; to express all we need an unsafe CQ.

Theorem 4. Let Q1 and Q2 be conjunctive queries so that the boolean con-
tainment query Q1 ⊆ Q2 is monotone. Then Q1 ⊆ Q2 is also expressible as a
nonemptiness query P �= ∅, where P is a conjunctive query. Moreover, the body
of P can be taken so that it is part of the body of Q2.

Corollary 1. {π}�=∅ �⊆ F⊆
2 , where F2 is the union-free fragment of {all, −1}.

Proof. Path queries expressed in the union-free fragment of N (all, −1) are
expressible as conjunctive queries. As mentioned above, we know there exists
a (monotone) boolean query Q in {π}�=∅ that is not in {all, −1}�=∅. If Q would be
in {all, −1}⊆, the above Theorem would imply Q in {all, −1}�=∅, a contradiction.

��
It is an interesting challenge to try to extend Theorem4 to unions of CQs,

CQs with nonequalities, and perhaps even recursive (Datalog) programs.

6 Closure Under Boolean Connectives

In Sect. 4 we already observed that the question whether F=∅ is subsumed by
F �=∅ is equivalent to whether F �=∅ is closed under negation. One may now also

A Framework for Comparing Query Languages 375

wonder about the logical negation of F⊆. It turns out, however, that F⊆ is
seldom closed under negation. For navigational graph query language fragments
F , we have closure under negation of F⊆ only if both all and − are in F . When
F is the family of conjunctive queries, or unions of conjunctive queries, F⊆ is
again not closed under negation. We omit the details.

Closure under conjunction is more interesting. Since we often enforce a set
(conjunction) of integrity constraints, or specify logical theories consisting of sets
of axioms, it is a natural question to ask if such conjunctions can be written as
single boolean queries in the same language.

We begin this investigation for our navigational graph query language frag-
ments. Under the emptiness modality, closure under conjunction is trivial, since
(q1 = ∅) ∧ (q2 = ∅) is equivalent to q1 ∪ q2 = ∅.

Under the nonemptiness modality, we have the following.

Theorem 5. Let F be a fragment. Then F �=∅ is closed under conjunction if
and only if either all ∈ F , or the database schema S consists of a single binary
relation name and F ⊆ {+}.
Proof. If F has all, then we can directly express (e1 �= ∅)∧(e2 �= ∅) by e1◦all◦e2 �=
∅. If F ⊆ {+} and S is a singleton {R}, the language N (F) is very simple and
F �=∅ is easily seen to be closed under conjunction.

For the only-if direction, first assume F does not have all and S contains
at least two relation names, say R and T . Now by the Additivity Lemma, the
boolean query R �= ∅ ∧ T �= ∅ is not in NoAll�=∅.

The other possibility is that F does not have all and F � {+}. Then F must
contain at least one of the features converse, projection, or intersection. Using
intersection, we can show that R2 ∩ R �= ∅ ∧ R3 ∩ R �= ∅ is not in NoAll�=∅.

Using converse, we can show that R2 ◦ R−1 ◦ R3 �= ∅ ∧ R3 ◦ R−1 ◦ R2 �= ∅
is not in NoAll�=∅. This result also covers the case with projection. Indeed, both
conjuncts are in {−1}�=∅, which is subsumed by {π}�=∅ [16]. Hence, the lemma
also gives a conjunction of {π}�=∅ queries that is not in NoAll�=∅. ��

Turning to the containment modality, we can only offer the general observa-
tion that F⊆ is closed under conjunction whenever F has set difference. Indeed,
we can express e1 ⊆ e2 ∧ e3 ⊆ e4 as (e1 − e2) ∪ (e3 − e4) ⊆ ∅.

At this point we have not been able to prove the converse direction, although
we conjecture that set difference in F is indeed necessary for F⊆ to be closed
under conjunction. Two partial results we could prove are that R3 ⊆ id∧R2 ⊆ R
is not in {di, −1,+}⊆, and that R3 ⊆ ∅ ∧ R2 ⊆ R is not in {∩, π,−1 ,+}⊆. The
difficulty here is to extend this allowing coprojection.

Conjunctive Queries. Under nonemptiness, both CQ and UCQ are closed
under conjunction, using the same construction as the one used to express tests
(proof of Theorem 2).

Under emptiness, note that a family of emptiness queries is closed under
conjunction if and only if the corresponding family of nonemptiness queries is

376 D. Surinx et al.

closed under disjunction. This is clearly the case for UCQ nonemptiness queries.
For CQs this happens only rarely:

Theorem 6. Let S be a database schema. Then, CQ�=∅
S is closed under disjunc-

tion if and only if S only contains at most two unary relations and no other
n-ary relation names with n ≥ 2.

Finally, we consider CQs under containment. Here closure under conjunction
happens only in the most trivial setting.

Theorem 7. Let S be a database schema. Then, CQ⊆
S is closed under conjunc-

tion if and only if S only contains one unary relation and no other n-ary relation
names with n ≥ 2.

The question whether UCQs under the containment modality are closed
under conjunction is still open.

7 Discussion and Conclusion

Observe that the closure under conjunction of the containment modality sub-
sumes the equality modality q1 = q2, which is equivalent to q1 ⊆ q2 ∧ q2 ⊆ q1, as
well as to q1 ∪ q2 ⊆ q1 ∩ q2. Conversely, equality always subsumes containment
for any family closed under union, since q1 ⊆ q2 if and only if q1 ∪ q2 = q2.

More generally, it becomes clear that there is an infinitude of modalities one
may consider. A general definition of what constitutes a boolean-query modality
may be found in the formal notion of generalized quantifier [30,31]. The affinity
of generalized quantifiers to natural language constructs makes them interesting
as query language constructs. For example, for two relations R and S, Barwise
and Cooper consider the boolean query R ∩ S �= ∅. This query can be stated as
“some tuple in R belongs to S”. Correspondingly, the modality e1∩e2 �= ∅ states
the language construct “some e1 are e2”. Obviously, most query languages are
closed under intersection, so that this modality is subsumed by the nonemptiness
modality. But again one may investigate whether the presence of intersection is
actually necessary.

Questions of the same nature as the ones studied here have also been studied
by logicians interested in generalized quantifiers. For example, Hella et al. [32]
showed that for every finite set of generalized quantifier there is a more powerful
one (by moving to more or higher-arity relations).

Obviously, the value of singling out certain generalized quantifiers for investi-
gation in a study such as ours will depend on their naturalness as query language
constructs. We believe that (non)emptiness and containment are among the most
fundamental modalities. It would be too large of a project to provide a complete
picture for all relevant boolean query families. Our goal in this paper has been
to provide a framework that helps to investigate such matters. We hope we have
also provided some interesting results that fit into this framework.

A Framework for Comparing Query Languages 377

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Ebbinghaus, H.D., Flum, J.: Finite Model Theory, 2nd edn. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-28788-4

3. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-662-07003-1

4. Kolaitis, P.: On the expressive power of logics on finite models. In: Grädel, E.,
Kolaitis, P.G., Libkin, L., Marx, M., Spencer, J., Vardi, M.Y., Venema, Y., Wein-
stein, S. (eds.) Finite Model Theory and Its Applications. Springer, Heidelberg
(2007). https://doi.org/10.1007/3-540-68804-8 2

5. Chandra, A., Merlin, P.: Optimal implementation of conjunctive queries in rela-
tional data bases. In: Proceedings 9th ACM Symposium on the Theory of Com-
puting, pp. 77–90. ACM (1977)

6. Beeri, C., Vardi, M.: A proof procedure for data dependencies. J. ACM 31(4),
718–741 (1984)

7. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1), 1 (2008)

8. Wood, P.: Query languages for graph databases. SIGMOD Rec. 41(1), 50–60 (2012)
9. Barceló, P.: Querying graph databases. In: Proceedings 32nd ACM Symposium on

Principles of Databases, pp. 175–188. ACM (2013)
10. Marx, M., de Rijke, M.: Semantic characterizations of navigational XPath. SIG-

MOD Rec. 34(2), 41–46 (2005)
11. ten Cate, B., Marx, M.: Navigational XPath: calculus and algebra. SIGMOD Rec.

36(2), 19–26 (2007)
12. Fletcher, G., Gyssens, M., Leinders, D., Van den Bussche, J., Van Gucht, D.,

Vansummeren, S., Wu, Y.: Relative expressive power of navigational querying on
graphs. In: Proceedings 14th International Conference on Database Theory (2011)

13. Libkin, L., Martens, W., Vrgoč, D.: Quering graph databases with XPath. In:
Proceedings 16th International Conference on Database Theory. ACM (2013)

14. Angles, R., Barceló, P., Rios, G.: A practical query language for graph DBs. In:
Bravo, L., Lenzerini, M. (eds.) Proceedings 7th Alberto Mendelzon International
Workshop on Foundations of Data Management. CEUR Workshop Proceedings,
vol. 1087 (2013)

15. Surinx, D., Fletcher, G., Gyssens, M., Leinders, D., Van den Bussche, J., Van
Gucht, D., Vansummeren, S., Wu, Y.: Relative expressive power of navigational
querying on graphs using transitive closure. Log. J. IGPL 23(5), 759–788 (2015)

16. Fletcher, G., Gyssens, M., Leinders, D., Surinx, D., Van den Bussche, J., Van
Gucht, D., Vansummeren, S., Wu, Y.: Relative expressive power of navigational
querying on graphs. Inf. Sci. 298, 390–406 (2015)

17. Fletcher, G., Gyssens, M., Leinders, D., Van den Bussche, J., Van Gucht, D.,
Vansummeren, S., Wu, Y.: The impact of transitive closure on the expressiveness
of navigational query languages on unlabeled graphs. Ann. Math. Artif. Intell.
73(1–2), 167–203 (2015)

18. Surinx, D., Van den Bussche, J., Van Gucht, D.: The primitivity of operators in
the algebra of binary relations under conjunctions of containments. In: Proceed-
ings 32nd Annual ACM/IEEE Symposium on Logic in Computer Science. IEEE
Computer Society Press (2017)

https://doi.org/10.1007/3-540-28788-4
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/3-540-68804-8_2

378 D. Surinx et al.

19. Imielinski, T., Lipski, W.: The relational model of data and cylindric algebras. J.
Comput. Syst. Sci. 28, 80–102 (1984)

20. Van den Bussche, J.: Applications of Alfred Tarski’s ideas in database theory. In:
Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 20–37. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44802-0 2

21. Surinx, D.: A framework for comparing query languages in their ability to express
boolean queries. Ph.D. thesis, Hasselt University (2017). http://dsurinx.be/phd.
pdf

22. Ameloot, T., Ketsman, B., Neven, F., Zinn, D.: Weaker forms of monotonicity for
declarative networking: a more fine-grained answer to the CALM-conjecture. ACM
Trans. Database Syst. 40(4), 21 (2016)

23. Cruz, I., Mendelzon, A., Wood, P.: A graphical query language supporting recur-
sion. In: Dayal, U., Traiger, I. (eds.) Proceedings of the ACM SIGMOD 1987
Annual Conference. SIGMOD Record, vol. 16, no. 3, pp. 323–330. ACM Press
(1987)

24. Chang, C., Keisler, H.: Model Theory, 3rd edn. North-Holland, Amsterdam (1990)
25. Benedikt, M., Leblay, J., ten Cate, B., Tsamoura, E.: Generating Plans from

Proofs: The Interpolation-Based Approach to Query Reformulation. Morgan &
Claypool, San Rafael (2016)

26. Rossman, B.: Homomorphism preservation theorems. J. ACM 55(3), 15 (2008)
27. Gurevich, Y.: Toward logic tailored for computational complexity. In: Börger, E.,

Oberschelp, W., Richter, M.M., Schinzel, B., Thomas, W. (eds.) Computation and
Proof Theory. LNM, vol. 1104, pp. 175–216. Springer, Heidelberg (1984). https://
doi.org/10.1007/BFb0099486

28. Ajtai, M., Gurevich, Y.: Monotone versus positive. J. ACM 34(4), 1004–1015
(1987)

29. Stolboushkin, A.: Finitely monotone properties. In: Proceedings 10th Annual IEEE
Symposium on Logic in Computer Science, pp. 324–330 (1995)

30. Barwise, J., Cooper, R.: Generalized quantifiers and natural language. Linguist.
Philos. 4(2), 159–219 (1981)

31. Badia, A.: Quantifiers in Action. ADS, vol. 37. Springer, Boston, MA (2009).
https://doi.org/10.1007/978-0-387-09564-6

32. Hella, L., Luosto, K., Väänänen, J.: The hierarchy theorem for generalized quan-
tifiers. J. Symb. Log. 61(3), 802–817 (1996)

https://doi.org/10.1007/3-540-44802-0_2
http://dsurinx.be/phd.pdf
http://dsurinx.be/phd.pdf
https://doi.org/10.1007/BFb0099486
https://doi.org/10.1007/BFb0099486
https://doi.org/10.1007/978-0-387-09564-6

A Generalized Iterative Scaling
Algorithm for Maximum Entropy Model
Computations Respecting Probabilistic

Independencies

Marco Wilhelm1(B), Gabriele Kern-Isberner1, Marc Finthammer2,
and Christoph Beierle2

1 Department of Computer Science, TU Dortmund, Dortmund, Germany
marco.wilhelm@tu-dortmund.de

2 Department of Computer Science, University of Hagen, Hagen, Germany

Abstract. Maximum entropy distributions serve as favorable models
for commonsense reasoning based on probabilistic conditional knowledge
bases. Computing these distributions requires solving high-dimensional
convex optimization problems, especially if the conditionals are com-
posed of first-order formulas. In this paper, we propose a highly opti-
mized variant of generalized iterative scaling for computing maximum
entropy distributions. As a novel feature, our improved algorithm is able
to take probabilistic independencies into account that are established by
the principle of maximum entropy. This allows for exploiting the log-
ical information given by the knowledge base, represented as weighted
conditional impact systems, in a very condensed way.

1 Introduction

In recent years, relational probabilistic programming [1,2] gained in importance
due to its expressive power when modeling uncertain knowledge about proper-
ties of and interactions among individual objects. Notably, sophisticated weighted
first-order model counting techniques [3] play an important part in contribut-
ing to the tractability of this research area. Many approaches, however, rely on
one or more of the following unfavorable restrictions: The probability of each
ground atom (=̂ random variable) has to be known, ground atoms are assumed
to be stochastically independent, or probabilities may be assigned to first-order
sentences, i.e. closed formulas, only. The maximum entropy methodology (Max-
Ent) [4,5] in combination with probabilistic first-order conditionals under the
aggregating semantics overcomes all these restrictions but lacks attention due to
missing efficient reasoning techniques.

In this paper, we show how probabilistic independencies can be used to speed
up the computation of maximum entropy distributions. For this, we formulate a
sufficient condition for probabilistic independence at maximum entropy based on
the logical structure of the underlying knowledge base, and we introduce a very
c© Springer International Publishing AG, part of Springer Nature 2018
F. Ferrarotti and S. Woltran (Eds.): FoIKS 2018, LNCS 10833, pp. 379–399, 2018.
https://doi.org/10.1007/978-3-319-90050-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90050-6_21&domain=pdf

380 M. Wilhelm et al.

condensed representation of this logical structure in terms of weighted condi-
tional impact systems (WCI systems). The main contribution of this paper is the
presentation of our algorithm iGIS which essentially extends existing approaches
used to compute MaxEmnt distributions, mainly [6], by exploiting these WCI
systems and therefore the probabilistic independencies.

Formally, we build upon a probabilistic language which allows for expressing
uncertain knowledge by probabilistic conditionals of the form (B|A)[p], meaning
that B follows from A with probability p, where A and B are first-order formu-
las (that may contain free variables). The aggregating semantics [7] attributes
a formal interpretation to these conditionals by combining stochastic and sub-
jective aspects of probabilities (probabilities of type 1 and type 2 according to
Halpern [8]), and without making any independence assumptions. Because of
this generous representation of probabilistic knowledge, no distinct probability
distribution as a model is predetermined. For reasoning tasks, however, it is
favorable to choose such a single model. The one which fits best to common-
sense reasoning and which is in the focus of this paper is provided by the princi-
ple of maximum entropy [4,9]. Determining this maximum entropy distribution
requires solving a complex optimization problem, which is the (computational)
bottleneck of the MaxEnt approach. A common way of calculating the Max-
Ent distribution is based on the generalized iterative scaling (GIS) algorithm [10]
which starts from a uniform probability distribution and adjusts the single prob-
abilities while iterating over the set of possible worlds. As this set is typically
large (exponential in the number of ground atoms), iterative scaling in its prim-
itive version is intractable for the first-order case. In [6], an optimized version
of GIS was presented which works on equivalence classes of possible worlds that
share the same conditional impact on the knowledge base (so-called weighted
conditional impacts or WCIs for short). However, the runtime of this algorithm
still depends on the domain size. Here, we further optimize this approach by
also taking probabilistic independencies and identically distributed parts of the
MaxEnt distribution into account that arise from the logical structure of the
underlying knowledge. Instead of adjusting the whole set of probabilities, our
novel algorithm iGIS adjusts the marginal probabilities induced by these inde-
pendencies, only. Notably, the independencies do not have to be considered dur-
ing the modeling process (like in graphical models such as Bayesian networks or
Markov random fields [11]) but appear implicitly by the definition of the MaxEnt
distribution. In order to represent the logical structure of the knowledge in such
a way that one can benefit from the independencies, we introduce the concept
of weighted conditional impact systems which generalize the idea of WCIs. Our
algorithm iGIS then iterates over these WCI systems instead of simple WCIs. In a
first empirical analysis we show that the runtime of iGIS is entirely independent
of the domain size in some cases. This happens if the domain elements that are
not explicitly mentioned in the knowledge base behave interchangeably, i.e., if
they have the same impact on the MaxEnt distribution. In general, our algorithm
iGIS is at least as fast as the algorithm in [6], as the latter can be reproduced as
a special instance of iGIS.

A Generalized Iterative Scaling Algorithm for Maximum Entropy Model 381

The rest of the paper is organized as follows: After briefly recalling the basics
of the aggregating semantics and maximum entropy reasoning, we motivate the
study of probabilistic independencies at maximum entropy and formulate a suf-
ficient condition for their appearance. Then, we introduce weighted conditional
impact systems as a basis for our generalized iterative scaling algorithm which
is presented in the subsequent section. Finally, we give some empirical results
and conclude. All proofs can be found in the Appendix.

2 Preliminaries

As a background language we consider a function-free first order language FOL
over the signature Σ = (Pred,Const) consisting of a finite set of predicates Pred
and a finite set of constants Const. Formulas in FOL are built in the usual way
using the connectives ∧ (conjunction), ∨ (disjunction), ¬ (negation), and the
quantifiers ∀X. (universal quantification) and ∃X. (existential quantification).
In order to increase readability, we sometimes abbreviate conjunctions A ∧ B
with AB, tautologies A ∨ ¬A with �, and negations ¬A with A for formulas
A,B ∈ FOL. Further, |= denotes the classical entailment relation, and ≡ the
equivalence relation on formulas in FOL.

Let P/n ∈ Pred be a predicate of arity n, and let c1, . . . , cn ∈ Const.1 Then,
P (c1, . . . , cn) is called a ground atom. The set of all possible ground atoms is
denoted with GΣ . If a formula A is either a ground atom or its negation, A
is called a ground literal. Lit(G) denotes the set of all ground literals derived
from G ⊆ GΣ . Every formula A ∈ FOL can be grounded by substituting each
free variable in A with a constant and by executing all quantifications (over the
finite domain). For example, (R(a, a)∨P (a))∧ (R(b, a)∨P (b))∧ (R(c, a)∨P (c))
is a proper ground instance of A = ∀X.(R(X,Y) ∨ P (X)) if Const = {a, b, c}. In
particular, ground formulas are closed, i.e., they do not contain free variables.
The set of all proper ground instances of a formula A is denoted with Grnd(A).
Hence, in the previous example one has |Grnd(A)| = 3.

A conditional (B|A)[p] with A,B ∈ FOL and p ∈ [0, 1] is a formal rep-
resentation of the statement “If A holds, then B follows with probability p”.
We explicitly allow A and B to contain free variables. A ground instance of
a conditional (B|A)[p] is obtained by grounding A and B such that free vari-
ables occurring in both A and B are substituted with the same constant. For
example, (R(a, b)|P (a))[p] and (R(a, a)|P (a))[p] are proper ground instances of
(R(X,Y)|P (X))[p] if a, b ∈ Const, but (R(a, b)|P (b))[p] is not. The set of all
proper ground instances of a conditional r is also denoted with Grnd(r). A finite
(ordered) set of conditionals is called a knowledge base.

Example 1 (Knowledge Base Rbfp). We consider the following knowledge base
as a running example: Let Σ = (Pred,Const) with

Pred = {Bird/1,Flies/1,Penguin/1}, tweety ∈ Const,

1 In this paper, predicate and variable names will always begin with an uppercase
letter and constant names with a lowercase letter.

382 M. Wilhelm et al.

where the predicates shall express that an individual is a bird, that it is able to fly,
and that it is a penguin, respectively. The knowledge base Rbfp = {r1, . . . , r4},

r1 = (Flies(X)|Bird(X))[0.9],
r2 = (¬Flies(X)|Penguin(X))[0.99],
r3 = (Bird(X)|Penguin(X))[1],
r4 = (Penguin(tweety)|�)[1],

states that (1) birds are able to fly with a probability of 0.9, (2) penguins are very
unlikely to fly (as no one has ever seen a flying penguin), say, with probability
0.99, (3) every penguin is a bird (by definition), and (4) the individual Tweety
is a penguin.

The probabilistic interpretations of conditionals are given by probability dis-
tributions over possible worlds. Here, a possible world ω is a complete conjunction
of ground literals, i.e., every ground atom occurs in a possible world exactly once,
either negated or positive. The set of all possible worlds is denoted with Ω. Fur-
ther, ΩG denotes the set of all complete conjunctions that can be built using only
the subset of ground atoms G ⊆ GΣ . We call these conjunctions partial possible
worlds. Probability distributions P : Ω → [0, 1] are extended to closed formu-
las A ∈ FOL by defining P(A) =

∑

ω |=A P(ω). The aggregating semantics [7]
further extends P to conditionals and resembles the definition of a conditional
probability by summing up the probabilities of all respective ground instances.

Definition 1 (Aggregating Semantics). Let P : Ω → [0, 1] be a probability
distribution, and let r = (B|A)[p] be a conditional. P is a model of r, written
P |= r, iff

∑

(B′|A′)[p]∈Grnd(r) P(A′B′)
∑

(B′|A′)[p]∈Grnd(r) P(A′)
= p (1)

and
∑

(B′|A′)[p]∈Grnd(r) P(A′) > 0. P is a model of a knowledge base R iff P |= r
for all r ∈ R.

If the formulas A and B of the conditional r = (B|A)[p] in Definition 1 are
closed already, the fraction in (1) reduces to the standard conditional probability
P(AB)/P(A) since |Grnd(r)| = 1. Further, if P assigns the probability 1 to a
single possible world ω and 0 to all the others, Eq. (1) reduces to the purely
statistical claim that the fraction of ground instances (B′|A′)[p] ∈ Grnd(r) that
are verified in ω (ω |= A′B′) compared to those that are applicable in ω (ω |= A′)
equals p.

A knowledge base R that has a model is called consistent. Consistent knowl-
edge bases usually have many models. For reasoning tasks, it is favorable to
select a certain model among them. The one which fits best to commonsense
according to [4,9] and which is in the focus of this paper is provided by the
principle of maximum entropy. This maximum entropy distribution (MaxEnt
distribution) PME

R is the unique distribution that models R while maximizing
the entropy H(P) = −∑ω∈Ω P(ω) log P(ω), which is a measure of indifference

A Generalized Iterative Scaling Algorithm for Maximum Entropy Model 383

in P. Computing the MaxEnt distribution requires solving a convex optimization
problem in a |Ω|-dimensional space, which is typically very large (exponential
in the number of ground atoms, where the number of ground atoms itself grows
polynomially depending on the number of constants and the arity of the predi-
cates). Therefore, sophisticated solvers are needed for this task in order to stay
tractable, i.e. for not suffering under an exponential blow-up. In [6], a generalized
iterative scaling approach is presented, which is based on building equivalence
classes of possible worlds in order to speed up calculations. We extend and
improve upon this approach by also taking probabilistic independencies of the
MaxEnt distribution into account.

3 Motivating the Study of Probabilistic Independencies

Independence properties are important in order to decompose probability distri-
butions into smaller parts that are computationally easier to handle. However,
they are difficult to unveil in a first-order setting. Before we formulate a criterion
for probabilistic independence at maximum entropy, we give an intuition to it
by the aid of the knowledge base Rbfp from Example 1.

It is a well-known result (cf. [5]) that the MaxEnt probabilities of two distinct
possible worlds do not differ if for all conditionals ri ∈ R the two possible worlds
verify and falsify the same number of ground instances of ri, where the number
of verifications is defined by

veri(ω) = |{(B|A)[p] ∈ Grnd(ri) | ω |= AB}|

and the number of falsifications is defined by

fali(ω) = |{(B|A)[p] ∈ Grnd(ri) | ω |=AB}|.

The functions veri and fali are known as counting functions (cf. [12,13]). For
example, if we consider a knowledge base R which consists of the single condi-
tional r1 = (Flies(X)|Bird(X))[0.9] only (cf. Example 1), the possible worlds in
which both the number of flying birds (ver1(ω)) and the number of non-flying
birds (fal1(ω)) are the same also have the same MaxEnt probability. This fact
motivates the investigation of conditional impacts, i.e. tuples (veri(ω), fali(ω))
for ω ∈ Ω and ri ∈ R, as abstractions of possible worlds that are convenient
for maximum entropy reasoning. In preparation of WCI systems, we will further
breakdown the notion of these conditional impacts. For instance, in order to
calculate the counting functions with respect to r1 = (Flies(X)|Bird(X))[0.9],
it is admissible to disassemble the possible worlds into several partial possi-
ble worlds: As every constant c ∈ Const leads to a different ground instance
r1(c) = (Flies(c)|Bird(c))[0.9] of r1 whose verification resp. falsification depends
on the truth values of the ground atoms concerning the constant c only, the
possible worlds can be disassembled into those partial possible worlds dealing
with only one constant. For example, the possible world

384 M. Wilhelm et al.

ω = . . .Bird(c) ∧ Flies(c) ∧ Penguin(c) ∧ Bird(d) ∧ Flies(d) ∧ Penguin(d) . . .

can be written as the conjunction of

ωc = Bird(c) ∧ Flies(c) ∧ Penguin(c), ωd = Bird(d) ∧ Flies(d) ∧ Penguin(d),

and the remaining ground literals in ω, whereby the evaluation of r1(c) depends
on ωc only. Analogously, the evaluation of r1(d) = (Flies(d)|Bird(d))[0.9] depends
on ωd only. This motivates the definition of conditional impacts of partial pos-
sible worlds, and if the decomposition of the possible worlds into their parts
is chosen appropriately, the conditional impacts of the partial possible worlds
reassemble to the conditional impacts of the whole possible worlds by compo-
nentwise addition (cf. Proposition 2). Moreover, the decomposition carries over
to the MaxEnt probabilities themselves, and one obtains, in this particular case,

PME
R (ω) = . . . PME

R (ωc) · PME
R (ωd) . . .

As our algorithm iGIS, which we will present later on (cf. Fig. 1), calcu-
lates MaxEnt distributions iteratively by adjusting marginal probabilities (here
PME

R (ωc),PME
R (ωd), . . .) instead of the probabilities PME

R (ω) themselves, this
observation alone means a reduction from about2 23·|Const| to about |Const| · 23

many adjustments per iteration step for the present knowledge base and also for
the knowledge base Rbfp from Example 1 (note that 3 is the number of the unary
predicates in the signature). Furthermore, for Rbfp, the marginal distributions
on the sets of partial possible worlds ΩGc

with Gc = {Bird(c),Flies(c),Penguin(c)}
for c ∈ Const \ {tweety} are identical since the conditional impacts of the par-
tial possible worlds defined over these sets Gc are the same. More precisely, for
every partial possible world ωc ∈ Gc with c �= tweety there is a partial pos-
sible world ω′

d ∈ Gd with d �= tweety that has the same conditional impact.
Only the constant tweety is exceptional, since there are partial possible worlds
in Gtweety that verify the conditional r4 = (Penguin(tweety)|�)[1] (for example,
ωtweety = Bird(tweety) ∧ Flies(tweety) ∧ Penguin(tweety)), but no partial possible
world in any Gc with c �= tweety verifies r4. The fact that some parts of the
maximum entropy distribution are identically distributed can also be considered
by our algorithm iGIS which further reduces the number of necessary adjust-
ments. Actually, only one of the identically distributed parts has to be adjusted
which leads to a further reduction from about |Const| · 23 to about 2 · 23 many
adjustments per iteration step for the knowledge base Rbfp. As a quintessence,
if all the constants that do not explicitly occur in a knowledge base R are inter-
changeable, the costs of computing PME

R are mostly independent of the domain
size. In the following, we provide a formal basis for these deliberations.

2 Actually, the numbers of adjustment steps are smaller in both cases since we group
(partial) possible worlds with the same conditional impact together (weighted con-
ditional impacts) and filter out “impossible” worlds beforehand.

A Generalized Iterative Scaling Algorithm for Maximum Entropy Model 385

4 Independence Criterion for MaxEnt Distributions

We formulate a sufficient condition for probabilistic independence under max-
imum entropy (Proposition 1) which is based on the logical structure of the
underlying knowledge base. While our former approach in [14] is on a purely
syntactical level, our novel deliberations here are semantically driven (cf. Eq. (2))
and therefore able to unveil independencies disguised by superfluous syntax. We
first refine the definition of a knowledge base to the following sense.

Definition 2 (Knowledge Base Decomposition). A ground knowledge base
is an (ordered) set of finitely many sets, each consisting of finitely many ground
conditionals. The distinct ground knowledge base RG = {Grnd(r1), . . . ,Grnd(rn)}
is called the grounding of the knowledge base R = {r1, . . . , rn}.

A set R = {R1
G, . . . ,Rk

G} of k ground knowledge bases Rj
G = {Rj

1, . . . , R
j
n},

j = 1, . . . , k, is called a decomposition of R iff ∪̇j=1,...,k Rj
i = Grnd(ri) for

i = 1, . . . , n, where ∪̇ is the disjoint union.

Obviously, {RG} is a decomposition of R, i.e., every knowledge base has
at least one decomposition. A non-trivial decomposition of a knowledge base is
shown in the following example.

Example 2 (Running Example Cont’d). A decomposition of the knowledge base
Rbfp from Example 1 is given by Rbfp =

{Rc
G | c ∈ Const,Rc

G = {Rc
1, . . . , R

c
4}
}

,

Rc
1 = {(Flies(c)|Bird(c)[0.9]}, c ∈ Const,

Rc
2 = {(¬Flies(c)|Penguin(c)[0.99]}, c ∈ Const,

Rc
3 = {(Bird(c)|Penguin(c)[1]}, c ∈ Const,

Rc
4 = ∅, c ∈ Const \ {tweety},

Rtweety
4 = {(Penguin(tweety)|�)[1]}.

In the decomposition Rbfp the ground instances of the conditionals in Rbfp are
separated by the constants in Const and are consolidated into the several sets Rc

G.
As there are no ground instances of conditional r4 concerning constants other
than tweety, Rc

4 = ∅ for c �= tweety.

Certain decompositions correspond to so-called syntax partitions (specific
partitions of GΣ) and lead to probabilistic independencies of the MaxEnt distri-
bution PME

R as we will see next. Beforehand, we give some convenient notations.
For a finite set of ground conditionals RG and a ground formula C ∈ FOL we

generalize the counting functions by

verRG
(C) = |{(B|A)[p] ∈ RG | C |= AB}|,

falRG
(C) = |{(B|A)[p] ∈ RG | C |= AB}|.

Note that verGrnd(ri)(ω) = veri(ω) and falGrnd(ri)(ω) = fali(ω) for ω ∈ Ω in
coincidence with the standard definition of counting functions. Further, we define

ωG =
∧

L∈Lit(G),
ω |=L

L, ω ∈ Ω, G ⊆ GΣ .

386 M. Wilhelm et al.

ωG coincides with ω except for the ground literals that are not in G and, thus, do
not occur in ωG . If {G1, . . . ,Gk} is a partition of GΣ , then ω ≡ ∧k

j=1 ωGj
holds.

Definition 3 (Syntax Partition). Let R = {r1, . . . , rn} be a knowledge base,
and let G = {G1, . . . ,Gk} be a partition of GΣ. G is called a syntax partition for
R if there is a decomposition R = {R1

G, . . . ,Rk
G} of R such that for all ω ∈ Ω,

veri(ω) =
k
∑

j=1

verRj
i
(ωGj

), fali(ω) =
k
∑

j=1

falRj
i
(ωGj

), i = 1, . . . , n. (2)

We call the decomposition R a G-respecting decomposition in this case.

Note that a syntax partition needs the semantic condition (2) to induce an
effective decomposition of possible worlds. A non-trivial syntax partition respect-
ing decomposition dismembers R into “smaller” ground knowledge bases while
preserving all the logical information that is needed for MaxEnt calculations.
Typical cases where knowledge bases have non-trivial syntax partitions are the
following:

1. There are knowledge bases R1,R2 such that R1 ∪̇R2 = R and R1,R2 do
not share any ground atoms3 (cf. Example 3). In other words, the knowledge
base R splits into the syntactically independent knowledge bases R1 and R2.

2. There are sets of ground conditionals R1
i , R

2
i such that R1

i ∪̇ R2
i = Grnd(ri)

for i = 1, . . . , n, and the sets of ground conditionals
⋃n

i=1 R1
i and

⋃n
i=1 R2

i

do not share any ground atoms (cf. Example 4). In other words, the ground
instances of the conditionals split into syntactically independent sets.

Example 3. Let Σ = ({A/1, B/1, C/1},Const), and let p1, p2 ∈ [0, 1]. We con-
sider Rsp = {r1, r2} with r1 = (B(X)|A(X))[p1] and r2 = (C(X)|�)[p2]}.
It is obvious that G = {G1,G2} with G1 = {A(a) | a ∈ Const} ∪ {B(a) |
a ∈ Const} and G2 = {C(a) | a ∈ Const} is a syntax partition for Rsp as
R = {{R1

1, R
1
2}, {R2

1, R
2
2}},

R1
1 = {(B(a)|A(a))[p1] | a ∈ Const}, R1

2 = ∅,

R2
1 = ∅, R2

2 = {(C(a)|�)[p2] | a ∈ Const},

is a G-respecting decomposition of R. However, the partition G′ = {G′
1,G′

2} of GΣ

with G′
1 = {A(a) | a ∈ Const} and G′

2 = {B(a) | a ∈ Const} ∪ {C(a) | a ∈ Const}
is not a syntax partition for R as, for instance,

verGrnd(r1)(ωG′
1
) = 0 < |Const| = verGrnd(r1)(ω)

for ω =
(∧

a∈Const A(a)
)∧(∧a∈Const B(a)

)

. Hence, there is no R ⊆ Grnd(r1) with

verR(ωG′
1
) = verGrnd(r1)(ω).

3 We say that R1 and R2 share a ground atom A ∈ GΣ if there are r1 ∈ R1 and
r2 ∈ R2 with ground instances r′

1 ∈ Grnd(r1) and r′
2 ∈ Grnd(r2) that both contain

the ground atom A.

A Generalized Iterative Scaling Algorithm for Maximum Entropy Model 387

Note that the syntax partition G is not “optimal”, since the more fine-grained
partition G2 = {Ga | a ∈ Const} ∪ {G′

a | a ∈ Const} with Ga = {A(a), B(a)} and
G′

a = {C(a)} is also a syntax partition for R (cf. also Example 4).

Example 4 (Running Example Cont’d). We recall the knowledge base Rbfp from
Example 1. Gbfp = {Gc | c ∈ Const} with Gc = {Bird(c),Flies(c),Penguin(c)} is a
syntax partition for R, as Rbfp from Example 2 is a Gbfp-respecting decomposi-
tion of Rbfp: For i = 1, 2, 3, let rc

i ∈ Grnd(ri) be the ground instance of ri ∈ Rbfp

which is obtained by substituting the free variable X in ri with the constant
c ∈ Const. Then, for all c, d ∈ Const and for all ω ∈ Ω,

ver{rc
i }(ωGd

) =

{

ver{rc
i }(ω), d = c

0, d �= c
.

Hence, veri(ω) =
∑

c∈Const ver{rc
i }(ω) =

∑

c∈Const ver{rc
i }(ωGc

) =
∑

c∈Const verRc
i

(ωGc
) as necessary. Further, verRc

4
(ω) = verRc

4
(ωGc

) = 0 for all constants
c �= tweety as Rc

4 is empty in this case, and ver4(ω) = verRtweety
4

(ωGtweety) holds.
Analogous calculations show fali(ω) =

∑

c∈Const falRc
i
(ωGc

) for i = 1, . . . , 4 for all
ω ∈ Ω.

The next proposition finally shows that a syntax partition G = {G1, . . . ,Gk}
serves as a basis for decomposing MaxEnt distributions into independent parts,
i.e., all the MaxEnt probabilities PME

R (ω) can be factorized into marginal prob-
abilities PME

R (ωGj
) over Gj , j = 1, . . . , k, and reassembled as a joint probability

over
⋃k

j=1 Gj (= GΣ).

Proposition 1. Let R be a consistent knowledge base, and let {G1, . . . ,Gk} be
a syntax partition for R. For all ω ∈ Ω,

PME
R (ω) =

k
∏

j=1

PME
R (ωGj

). (3)

Example 5 (Running Example Cont’d). Since Rbfp from Example 1 is consistent
and Gbfp = {Gc | c ∈ Const} with Gc = {Bird(c),Flies(c),Penguin(c)} is a syntax
partition for Rbfp (cf. Example 4), the MaxEnt distribution PME

Rbfp
satisfies

PME
Rbfp

(ω) =
∏

c∈Const

PME
Rbfp

(ωGc
).

Moreover, the sets Gc,Gd for c, d �= tweety are even identically distributed. To see
this, consider the bijection β : ΩGc

→ ΩGd
which simply replaces the constant c

with the constant d whenever c occurs. Then, PME
Rbfp

(ωGd
) = PME

Rbfp
(β(ωGc

)) for
all ωGd

∈ ΩGd
.4 Hence, in order to determine the MaxEnt distribution PME

Rbfp
, only

4 Consider the bijection β : ΩGc → ΩGd which simply replaces the constant c with the
constant d whenever c occurs.

388 M. Wilhelm et al.

the probabilities PME
Rbfp

(ωGtweety) for all ωGtweety ∈ ΩGtweety as well as the probabilities
PME

Rbfp
(ωGc

) for all ωGc
∈ ΩGc

for only one single constant c �= tweety are needed.
At this point, we want to anticipate that our algorithm iGIS in Sect. 6 makes use
of this benefit.

The fact that {G1, . . . ,Gk} is a syntax partition for R is a sufficient but, in
general, not a necessary condition for the factorization of PME

R as in Proposi-
tion 1. The main reason for this is that PME

R does not only depend on the logical
structure of R but also on the probabilities of the conditionals in R that are
not considered by syntax partitions. However, the differentiation between inde-
pendencies caused by the logical structure of R and those which are caused by
the probabilities of R is desired, as the logical part of R can be understood as
a reasoner’s fundamental conception of the coherences in the world, while the
probabilities are often volatile and imprecise. In this sense, independencies based
on the logical structure of R are more essential.

5 Weighted Conditional Impact Systems

The generalized iterative scaling algorithm for computing maximum entropy
distributions as presented in [6] works on a set of so-called weighted conditional
impacts (WCIs; cf. [13]). Conditional impacts are, as already mentioned in Sect. 3,
an abstraction of possible worlds that are characterized by their verification and
falsification of conditionals. Identical conditional impacts are grouped together
and are assigned a weight (their quantity). Therefore, they serve as a formal
representation of equivalence classes of possible worlds. Here, we refine the set of
weighted conditional impacts to a system of several sets of weighted conditional
impacts (WCI system) that has its origin in a predetermined syntax partition,
and which is an even more condensed representation of the possible worlds.
Proposition 1 will then allow us to perform generalized iterative scaling on this
WCI system.

For the rest of the paper, let

– R = {r1, . . . , rn} be a knowledge base with ri = (Bi|Ai)[pi] for i = 1, . . . , n,
– G = {G1, . . . ,Gk} be a syntax partition for R,
– R = {Rj

G | j = 1, . . . , k} with Rj
G = {Rj

1, . . . , R
j
n} be a G-respecting decom-

position of R.

We further differentiate the conditionals in R into two categories: A deterministic
conditional r = (B|A)[p] ∈ R is a conditional with p ∈ {0, 1}. It prevents models
of R from assigning a positive probability to possible worlds ω ∈ Ω with

verGrnd(r)(ω) > 0 if p = 0, falGrnd(r)(ω) > 0 if p = 1, (4)

which is a requirement of the aggregating semantics. We call possible worlds
that satisfy (4) for any deterministic conditional in R null-worlds. The set of all
null-worlds is denoted with Ω0.

A Generalized Iterative Scaling Algorithm for Maximum Entropy Model 389

A non-deterministic conditional instead is of the form r = (B|A)[p] with
p ∈ (0, 1). For the rest of the paper, we assume R = {r1, . . . , rm, rm+1, . . . , rn}
with r1, . . . , rm being non-deterministic conditionals, and rm+1, . . . , rn being
deterministic. For our algorithm it will be necessary to separate out the null-
worlds first, due to their different impact on the MaxEnt distribution (which
is in common with the algorithm in [6]). This preprocessing step is implicitly
covered by the following definition of conditional impacts.

The conditional impact caused by ω ∈ ΩGj
on Rj

G is

γRj
G
(ω) =

{
(

(verRj
i
(ω), falRj

i
(ω))

)

i=1,...,m
if (∗) holds

undefined otherwise
,

where the condition (∗) is true iff

verRj
i
(ω) = 0 if pi = 0, falRj

i
(ω) = 0 if pi = 1, i = m + 1, . . . , n.

Note that conditional impacts leave the deterministic conditionals out except for
the cases specified in condition (∗). As a consequence of the next proposition,
the definition of conditional impacts which we use here is a refinement of the
standard definition of conditional impacts according to [6].

Proposition 2. Let R be a knowledge base, let G be a syntax partition for R,
and let R be a G-respecting decomposition of R as described above. If ω ∈ Ω is
not a null-world, then

γRG
(ω) =

(

(
k
∑

j=1

(γRj
i
(ωGj

)i)1,
k
∑

j=1

(γRj
i
(ωGj

)i)2)
)

i=1,...,m
.

If ω is a null-world, then γRj
G
(ωGj

) is undefined for at least one j ∈ {1, . . . , k}.
According to Proposition 2, conditional structures of null-worlds are not well-

defined and hence excluded from the following elaboration. Apart from that, the
conditional impact of each non-null-world can be broken down into the decom-
position of R and hence is considered in the following.

A tuple γ ∈ (N0 × N0)m is a conditional impact of Rj
G iff there is a partial

possible world ω ∈ ΩGj
with γRj

G
(ω) = γ. For such a γ,

wgtj(γ) = |{ωGj
∈ ΩGj

| γRj
G
(ωGj

) = γ}|

is the weight of γ, and wgtj is called the weighting function of Rj
G. Further,

Γj denotes the set of all conditional impacts of Rj
G, and (Γj ,wgtj) is called the

weighted conditional impact of Rj
G. Weighted conditional impacts (WCIs) store

the possible combinations of the numbers of verifications (ver) and falsifications
(fal) of the ground conditionals in Rj

G and how often these combinations can be
observed (wgt). To be able to trace back the total number of ground conditionals
in Rj

G, we annotate the WCIs with corresponding vectors ηj = (|Rj
1|, . . . , |Rj

m|).
The resulting weighted conditional impact components form the essentials of the
weighted conditional impact systems.

390 M. Wilhelm et al.

Definition 4 (Weighted Conditional Impact System). Let R be a knowl-
edge base, let G be a syntax partition for R, and let R be a G-respecting decom-
position of R as described above. A tuple (Γ,wgt,η) is a weighted conditional
impact component of R iff there is a Rj

G ∈ R with (Γj ,wgtj ,ηj) = (Γ,wgt,η).
For such a weighted conditional impact component c = (Γ,wgt,η),

cntR(c) = |{Rj
G ∈ R | (Γj ,wgtj ,ηj) = c}|

is the count of c, and cntR is called the counting function of R. Further, CR

denotes the set of all conditional impact components of R, and (CR, cntR) is
called the weighted conditional impact system of R.

A weighted conditional impact system (WCI system) is uniquely defined by a
consistent knowledge base R and a syntax partition G for R which justifies the
notation S(R,G) for the one WCI system for R and G.

Example 6 (Running Example Cont’d). The weighted conditional impact system
for the knowledge base Rbfp from Example 1 and the syntax partition G from
Example 4 is S(Rbfp,Gbfp) = ({ctweety, cc}, cnt) with

ctweety = (Γtweety,wgttweety,ηtweety),

cnt(ctweety) = 1,

Γtweety = {γ1
tweety,γ

2
tweety},

γ1
tweety =

(

(1, 0), (0, 1)
)

,

γ2
tweety =

(

(0, 1), (1, 0)
)

,

wgt(γi
tweety) = 1, i = 1, 2,

ηtweety = (1, 1),

cc = (Γc,wgtc,ηc),
cnt(cc) = |Const| − 1,

Γc = {γ1
c , . . . ,γ

5
c},

γ1
c =

(

(1, 0), (0, 1)
)

,

γ2
c =

(

(1, 0), (0, 0)
)

,

γ3
c =

(

(0, 1), (1, 0)
)

,

γ4
c =

(

(0, 1), (0, 0)
)

,

γ5
c =

(

(0, 0), (0, 0)
)

,

wgt(γi
c) = 1, i = 1, . . . , 4,

wgt(γ5
c) = 2,
ηc = (1, 1).

For example, the conditional impact γ1
tweety ∈ Γtweety refers to the conjunction

Bird(tweety)∧Flies(tweety)∧Penguin(tweety) ∈ ΩGtweety that occurs in every possi-
ble world in which Tweety is an abnormal penguin which can fly. This conjunc-
tion verifies the conditional (Flies(tweety)|Bird(tweety))[0.9] ∈ Rtweety

1 but falsifies
the conditional (¬Flies(tweety)|Penguin(tweety))[0.99] ∈ Rtweety

2 and indeed leads
to the conditional impact ((1, 0), (0, 1)). The same conditional impact occurs in
Γc for any c ∈ Const, too, since the conjunction Bird(c) ∧ Flies(c) ∧ Penguin(c)
verifies and falsifies the corresponding conditionals in Rc

1 resp. Rc
2.

A Generalized Iterative Scaling Algorithm for Maximum Entropy Model 391

On the other side, the conditional impact ((1, 0), (0, 0)) is in Γc but
not in Γtweety, since the presence of this conditional impact in Γtweety would
demand that Tweety is not a penguin (as the conditional (¬Flies(tweety)|Penguin
(tweety))[0.99] might not be applicable) which contradicts (Penguin(tweety)|�)
[1] ∈ Rtweety

4 . As such a deterministic conditional does not exist for the constants
other than Tweety (it is Rc

4 = ∅), the conditional impact ((1, 0), (0, 0)) is in Γc,
c �= tweety.

6 Generalized Iterative Scaling Algorithm

We now propose our generalized iterative scaling algorithm iGIS which is an opti-
mization of the algorithm GISWCI presented in [6], since iGIS is able to propagate
probabilistic independencies, in addition. The algorithm iGIS takes a weighted
conditional impact system S(R,G), the number of deterministic conditionals in
R, and the probabilities of the non-deterministic conditionals in R as input, and
returns |R| + 1 many real numbers determining the maximum entropy distribu-
tion PME

R .
iGIS is based on the idea of representing the MaxEnt distribution PME

R as a
Gibbs distribution [15]: Following the method of Lagrange multipliers [16], PME

R
is given by5

PME
R (ω) =

{

α0

∏m
i=1 α

(1−pi)·veri(ω)−pi·fali(ω)
i , ω ∈ Ω \ Ω0

0, ω ∈ Ω0
, (5)

where the non-negative real numbers αi, i = 0, . . . , n, are exponentials of the
Lagrange multipliers corresponding to the m non-deterministic conditionals in
R as well as the normalizing condition

∑

ω∈Ω PME
R (ω) = 1, which together con-

stitute the constraints on PME
R . The αi-values are the output of iGIS. For a more

detailed analysis of the theoretical background of (5), we refer to [5]. Here, we
want to note that if {G1, . . . ,Gk} is a syntax partition for R, then the Gibbs
representation (5) of PME

R further factorizes to

PME
R (ω) =

⎧

⎨

⎩

α0

∏k
j=1

∏m
i=1 α

(1−pi)·verRj
i
(ωj)−pi·falRj

i
(ωj)

i , ω ∈ Ω \ Ω0

0, ω ∈ Ω0
,

in accordance with the independence result in Proposition 1. Hence, MaxEnt
reasoning can directly be performed based on the information provided by a
WCI system.

The pseudo code of iGIS is presented in Fig. 1. In Step 2, a probability distri-
bution P is initialized to the uniform distribution.6 In the main loop (Step 4),

5 This representation of PME
R exists except for very rare pathological cases which can

be circumvented by prescient knowledge engineering.
6 More precisely, uniform marginals of the probability distribution are considered in

order to avoid iterations over the whole probability distribution.

392 M. Wilhelm et al.

Fig. 1. Pseudo code of iGIS which computes PME
R based on a WCI system.

A Generalized Iterative Scaling Algorithm for Maximum Entropy Model 393

scaling factors βi depending on the input of the algorithm and the current state
of P are determined, which are used to adjust the probability distribution P
afterwards. This is repeatedly done until an abortion condition holds. Usually,
this condition is chosen such a way that the loop aborts when the probability
distribution (or the scaling factors) do not change substantially. Finally, the val-
ues α0, α1, . . . , αm are extracted from the scaling factors respectively the last
state of the probability distribution. The pseudo code uses some abbreviations
which we want to define in the following: m̂ is the number of non-deterministic
conditionals in R plus one, i.e., m̂ = m + 1. With G we denote the number
of all ground instances of all non-deterministic conditionals in R, which can
be derived from the input WCI system by G =

∑m
i=1

∑k
j=1 cnt(cj) · (ηj)i. The

so-called normalized feature functions are given by

f̂i,j(γ) =
(γi)1 +

(
(ηj)i − (γi)1 − (γi)2

) · pi

G
, f̂m̂,j(γ) =

∑m
i=1(ηj)i

G
−

m∑

i=1

f̂i,j(γ),

for i = 1, . . . , m, j = 1, . . . , k, and γ ∈ Γj . The corresponding normalized expected
values are

ε̂i =
pi ·∑k

j=1 cnt(cj) · (ηj)i

G
, i = 1, . . . , m, ε̂m̂ = 1 −

m
∑

i=1

ε̂i.

The correctness7 of iGIS can be proven by realizing that the original algorithm
GISWCI in [6] is correct and that our algorithm is in one-to-one correspondence
to the latter. We just took advantage of the fact that many expressions of the
original algorithm either factorize or decompose into sums if the independence
result in Proposition 1 is applicable. In particular, the loops in the Steps 2, 4(d),
and 4(e) of iGIS are executed over WCIs in the original algorithm (i.e., equiva-
lence classes of the possible worlds in Ω), while they are executed independently
over the elements of WCI components here (i.e., equivalence classes of the par-
tial possible worlds in ΩGj

), which means a reduction from |Γ | to
∑k

j=1 |Γj |
many iterations.8 Being more precise, if for several Γi it holds that the tuples
(Γi,wgti,ηi) are componentwise equal, we iterate only over one of them and
consider the count cnt((Γi,wgti,ηi)) as an exponent or as a prefactor (e.g., in
the Steps 4(b) and 6). In terms of probability theory, this is possible since PME

R
is identically distributed on the corresponding sets of atoms Gi in this case. As
a consequence, the number of iterations within the main repeat-loop in Step 4
is independent of the domain size iff the number of components of the consid-
ered WCI system is independent of the domain size, which again is possible iff
the number of differently distributed parts of PME

R is independent of the domain
size. The algorithm GISWCI from [6] can be reproduced as an instance of iGIS by
invoking iGIS on the trivial WCI system S(R, {GΣ}). Consequently, iterations in
iGIS are executed on standard WCIs in this trivial case.

7 Correctness here means that α0, α1, . . . , αm can be calculated with any precision if
the loop in Step 4 is executed sufficiently often.

8 Here, Γ is the set of all ordinary WCIs with respect to the knowledge base R.

394 M. Wilhelm et al.

Table 1. Empirical results of applying iGIS to some example knowledge bases (abortion
condition: δβ = 0.001).

Set-up Problem size Runtimes

R |Const| |Ω| |Ω \ Ω0| ∑k
j=1 |Γj |

on {GΣ}
∑k

j=1 |Γj |
on G

CONV + iGISon
{GΣ} =̂GISWCI

iGIS on G

Rbfp 14 242 ≈235 2,940 7 1.0 s 0.9 s <0.1 s

Rbfp 16 248 ≈240 4,692 7 1.7 s 0.5 s <0.1 s

Rbfp 18 254 ≈245 7,125 7 4.2 s 0.8 s <0.1 s

Rbfp 20 260 ≈250 10,395 7 14.7 s 1.5 s <0.1 s

Rcty 4 + 4 228 ≈227 3,601 20 1.4 s 0.7 s <0.1 s

Rcty 6 + 4 242 ≈241 23,541 20 53.7 s 9.6 s <0.1 s

Rcty 8 + 4 256 ≈254 91,713 20 >600.0 s 65.0 s <0.1 s

Rcty 10 + 4 270 ≈268 266,453 20 >600.0 s 218.3 s <0.1 s

Rmth 4 240 ≈238 75 6 <0.1 s <0.1 s <0.1 s

Rmth 10 2220 ≈2216 726 6 0.2 s <0.1 s <0.1 s

Rmth 12 2312 ≈2307 1,183 6 0.2 s <0.1 s <0.1 s

Rmth 14 2420 ≈2414 1,800 6 0.3 s <0.1 s <0.1 s

7 Empirical Results

We applied our algorithm iGIS to different knowledge bases (cf. Examples 1, 7,
and 8) while varying the domain size |Const| as well as the syntax partition based
on which the input WCI system is calculated. More precisely, we ran iGIS with
WCI systems based on the trivial syntax partition {GΣ} as input (=̂ executing
GISWCI from [6]) as well as with very condensed WCI systems based on more
fine-grained syntax partitions (Gbfp, Gcty, and Gmth). While the condensed WCI
systems of our example knowledge bases can be determined by hand, the trivial
WCI systems become very large. Actually, we extrapolated them from the con-
densed WCI systems with the help of an auxiliary algorithm CONV which we
implemented only for this purpose. Determining the trivial WCI systems directly
by the näıve approach described in Fig. 2 of [6] was far too time-consuming for
our larger examples. As an abortion condition we used the accuracy threshold

β
(l)
i − β

(l−1)
i < 0.001, i = 1, . . . , n. (δβ = 0.001)

The results are shown in Table 1. Besides the runtimes themselves, the number
of iterations in the Steps 2, 4(d), and 4(e) of iGIS, namely

∑k
j=1 |Γj |, is given.

As the number of iteration steps
∑k

j=1 |Γj | is very low (≤20) and independent
of the domain size |Const| (resp. |Person| in Example 7) for all of the example
knowledge bases when using the condensed WCI systems, iGIS is able to com-
pute the MaxEnt distributions very fast (in less than 100 ms). In contrast, the
runtimes of iGIS increase significantly when using the trivial WCI systems (which

A Generalized Iterative Scaling Algorithm for Maximum Entropy Model 395

corresponds to applying GISWCI from [6]), because of the dependence of the num-
ber of iteration steps

∑k
j=1 |Γj | on |Const| in this case. Moreover, one would need

to add the runtimes of CONV to those of iGIS in order to get the total runtimes,
since calculating the trivial WCI systems is expensive. To qualify these observa-
tions, we have to say that we purposely have chosen example knowledge bases
that come up with very condensed WCI systems in order to illustrate the ben-
efit of taking account of probabilistic independencies when calculating MaxEnt
distributions. If a knowledge base does not have such a condensed WCI system,
then, of course, iGIS needs the trivial one as input.

Example 7 (Knowledge Base Rcty). We consider the knowledge base Rcty from
[6] which makes use of typed constants and predicates: There is a certain number
of constants of type Person and a certain number of constants of type City, namely
four (City = {london, paris, rome, vienna}), such that Person ∪̇ City = Const. The
predicate VisitsEUcity(P,C) expresses that a person P visits the city C. The
predicates LikesSightseeing(P), LivesInEurope(P), and LikesChurches(P) express
that a person P likes sightseeing, lives in Europe, and likes churches, respectively.
The knowledge base Rcty itself consists of the four conditionals

r1 = (VisitsEUcity(P,C)|�)[0.1],
r2 = (VisitsEUcity(P,C)|LikesSightseeing(P))[0.3],
r3 = (VisitsEUcity(P,C)|LivesInEurope(P))[0.6],
r4 = (VisitsEUcity(P, rome)|LikesChurches(P) ∧ LikesSightseeing(P))[1].

Gcty = {Gc | c ∈ Person} with

Gc ={LikesSightseeing(c), LivesInEurope(c), LikesChurches(c)}
∪ {VisitsEUcity(c, d) | d ∈ City}

is a syntax partition for Rcty and the corresponding WCI system S(Rcty,Gcty)
is ({c}, cnt) with cnt(c) = |Person| and c = (Γ,wgt,η) such that

Γ =
{(

(a, b), c · (a, b), d · (a, b)
)

︸ ︷︷ ︸

=γ c,d
(a,b)

| 0 ≤ a, b,≤ 4, a + b = 4, c, d ∈ {0, 1}
}

,

wgt(γc,d
(a,b)) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1, a = 0, c = 1
2, (a = 4) or (a = 0, c = 0)
5, a = 1, c = 1
7, a = 3, c = 1
8, (a = 1, c = 0) or (a = 3, c = 0)
9, a = 2, c = 1
12, a = 2, c = 0

,

η = (4, 4, 4).

396 M. Wilhelm et al.

Example 8 (Knowledge Base Rmth). Consider the knowledge base Rmth about
characteristics of human beings which consists of the conditionals

r1 = (∀Y.(ChildOf(Y,X) ⇒ Loves(X,Y))|�)[0.9],
r2 = (Mother(X)|Female(X))[0.6],
r3 = (Female(X) ∧ ∃Y.ChildOf(Y,X)|Mother(X))[1],

expressing that humans typically love all their children (with a probability of
0.9), females are mothers with probability 0.6, and mothers are females who have
at least one child, respectively. As Gmth = {Gc | c ∈ Const} with

Gc = {Female(c),Mother(c)} ∪ {ChildOf(d, c), Loves(c, d) | d ∈ Const}
is a syntax partition for Rmth, the WCI system S(Rmth,Gmth) = ({c}, cnt)
consists of c = (Γ,wgt,η) with cnt(c) = |Const| and

Γ = {γ1, . . . ,γ6},

γ1 =
(

(1, 0), (1, 0)
)

, wgt(γ1) = 3|Const| − 2|Const|,

γ2 =
(

(0, 1), (1, 0)
)

, wgt(γ2) = 4|Const| − 3|Const|,

γ3 =
(

(0, 1), (0, 1)
)

, wgt(γ3) = 4|Const| − 3|Const|,

γ4 =
(

(0, 1), (0, 0)
)

, wgt(γ4) = 4|Const| − 3|Const|,

γ5 =
(

(1, 0), (0, 1)
)

, wgt(γ5) = 3|Const|,

γ6 =
(

(1, 0), (0, 0)
)

, wgt(γ6) = 3|Const|,

η = (1, 1).

8 Conclusion and Future Work

We formulated a sufficient condition under which maximum entropy distribu-
tions decompose into probabilistic independent parts. This condition is based
on the notion of syntax partitions which was originally introduced in [14] and
is reformulated in a slightly different way here. We further utilized this result
to improve the generalized scaling approach for determining maximum entropy
distributions presented in [6], which results in a significant reduction of compu-
tation times in our benchmark examples.

In future work, we want to address mainly two tasks: First, we want to
develop an algorithm which computes a syntax partition for a given knowledge
base and the corresponding weighted conditional impact system automatically.
Second, we want to extend our approach to deal with conditional independencies
which would widen the application area of our improved algorithm a lot. Both
are important steps towards lifted inferences at maximum entropy. A further
question would be how the independence results carry over to other qualitative
and quantitative frameworks for uncertain knowledge representation.

A Generalized Iterative Scaling Algorithm for Maximum Entropy Model 397

Acknowledgements. This research was supported by the German National Science
Foundation (DFG), Research Unit FOR 1513 on Hybrid Reasoning for Intelligent
Systems.

Proofs of Results

Proposition 1. Let R be a consistent knowledge base, and let {G1, . . . ,Gk} be
a syntax partition for R. For all ω ∈ Ω,

PME
R (ω) =

k
∏

j=1

PME
R (ωGj

).

Proof. We give a proof for those cases in which the representation (5) of PME
R

exists. The normalizing constant can be written as α0 =
∑

ω∈Ω

∏m
i=1 α

fi(ω)
i

where fX(C) abbreviates (1−pi) · verX(C)−pi · falX(C) for any ground formula
C ∈ FOL. Further, let R = {R1

G, . . . , Rk
G} be a {G1, . . . ,Gk}-respecting decom-

position of R with Rj
G = {Rj

1, . . . , R
j
n} for j = 1, . . . , k. Then, α0 =

∏k
j=1 αj

0

holds where αj
0 =

∑

ωj∈ΩGj

∏m
i=1 α

fi(ωj)
i . For ω ∈ Ω \ Ω0, it follows that

PME
R (ω) =α0

m
∏

i=1

α
fi(ω)
i = α0

m
∏

i=1

k
∏

j=1

α
f
R

j
i
(ωGj

)

i

=
k
∏

j=1

[

(

αj
0

m
∏

i=1

α
f
R

j
i
(ωGj

)

i

)

·
∏

l �=j

⎛

⎝

∑

ω′
l∈ΩGl

αl
0

m
∏

i=1

α
f
Rl

i
(ω′

l)

i

⎞

⎠

︸ ︷︷ ︸

=1

]

=
k
∏

j=1

(
∑

ω′∈Ω
ω′ |=ωGj

α0

m
∏

i=1

k
∏

l=1

α
f
Rl

i
(ωGl

)

i

)

=
k
∏

j=1

(
∑

ω′∈Ω
ω′ |=ωGj

α0

m
∏

i=1

α
fi(ω

′)
i

)

=
k
∏

j=1

PME
R (ωGj

).

If ω ∈ Ω0, there is a deterministic conditional r = (B|A)[p] ∈ R and an index
l ∈ {1, . . . , k} such that verGrnd(r)(ωGl

) > 0 if p = 0 and falGrnd(r)(ωGl
) > 0 if

p = 1. As a consequence, every ω′ with ω′ |= ωGl
is a null-world, and

k
∏

j=1

PME
R (ωGj

) =

⎛

⎝

∑

ω′ |=ωGl

PME
R (ω′)

⎞

⎠ ·
∏

j �=l

PME
R (ωGj

) = 0 ·
∏

j �=l

PME
R (ωGj

) = 0

as required. �

398 M. Wilhelm et al.

Proposition 2. Let R be a knowledge base, let G be a syntax partition for R,
and let R be a G-respecting decomposition of R as described above. If ω ∈ Ω is
not a null-world, then

γRG
(ω) =

(

(
k
∑

j=1

(γRj
i
(ωGj

)i)1,
k
∑

j=1

(γRj
i
(ωGj

)i)2)
)

i=1,...,m
.

If ω is a null-world, then γRj
G
(ωGj

) is undefined for at least one j ∈ {1, . . . , k}.

Proof. Let ω ∈ Ω\Ω0. By definition, γRG (ω) = ((veri(ω), fali(ω)))i=1,...,m. Since
R is a G-respecting decomposition of R, veri(ω) =

∑k
j=1 verRj

i
(ωGj

) as well as

fali(ω) =
∑k

j=1 falRj
i
(ωGj

) hold for i = 1, . . . , n, and hence, in particular, this
holds for i = 1, . . . ,m (since m ≤ n). By applying the definition of γRj

i
(ωGj

),
the proposition follows. As syntax partitions also take deterministic conditionals
into account, the statement concerning null-worlds follows immediately. �

References

1. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT
Press, Cambridge (2007)

2. Raedt, L.D., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.): Probabilistic Induc-
tive Logic Programming. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-78652-8

3. Van Den Broeck, G.: First-order model counting in a nutshell. In: Proceedings
of the 25th International Joint Conference on Artificial Intelligence (IJCAI), pp.
4086–4089. AAAI Press (2016)

4. Paris, J.B.: The Uncertain Reasoner’s Companion - A Mathematical Perspective.
Cambridge University Press, Cambridge (1994)

5. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44600-1

6. Finthammer, M., Beierle, C.: A two-level approach to maximum entropy model
computation for relational probabilistic logic based on weighted conditional
impacts. In: Straccia, U., Cal̀ı, A. (eds.) SUM 2014. LNCS (LNAI), vol. 8720, pp.
162–175. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11508-5 14

7. Thimm, M., Kern-Isberner, G.: On probabilistic inference in relational conditional
logics. Logic J. IGPL 20(5), 872–908 (2012)

8. Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3),
311–350 (1990)

9. Paris, J.B.: Common sense and maximum entropy. Synthese 117(1), 75–93 (1999)
10. Darroch, J.N., Ratcliff, D.: Generalized iterative scaling for log-linear models. Ann.

Math. Stat. 43(5), 1470–1480 (1972)
11. Koller, D., Friedman, N.: Probabilistic Graphical Models. MIT Press, Cambridge

(2009)
12. Kern-Isberner, G., Thimm, M.: A ranking semantics for first-order conditionals.

In: Proceedings of the 20th European Conference on Artificial Intelligence (ECAI).
FAIA, vol. 242, pp. 456–461. IOS Press (2012)

https://doi.org/10.1007/978-3-540-78652-8
https://doi.org/10.1007/978-3-540-78652-8
https://doi.org/10.1007/3-540-44600-1
https://doi.org/10.1007/978-3-319-11508-5_14

A Generalized Iterative Scaling Algorithm for Maximum Entropy Model 399

13. Finthammer, M., Beierle, C.: Using equivalences of worlds for aggregation seman-
tics of relational conditionals. In: Glimm, B., Krüger, A. (eds.) KI 2012. LNCS
(LNAI), vol. 7526, pp. 49–60. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33347-7 5

14. Wilhelm, M., Kern-Isberner, G., Ecke, A.: Basic independence results for maxi-
mum entropy reasoning based on relational conditionals. In: Proceedings of the
3rd Global Conference on Artificial Intelligence (GCAI). EPiC Series in Comput-
ing, vol. 50, pp. 36–50 (2017)

15. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6),
721–741 (1984)

16. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

https://doi.org/10.1007/978-3-642-33347-7_5
https://doi.org/10.1007/978-3-642-33347-7_5

Author Index

Aamer, Heba 17

Beierle, Christoph 34, 379
Beránek, Jakub 133
Bertossi, Leopoldo 55
Biskup, Joachim 77
Bliem, Bernhard 97
Böhm, Stanislav 133
Britz, Katarina 114

Cayrol, Claudette 150
Corrégé, Jean-Baptiste 207

Doder, Dragan 170
Durand, Arnaud 186

Fandinno, Jorge 150
Fariñas del Cerro, Luis 150
Finthammer, Marc 379

Gyssens, Marc 225, 244

Hadoux, Emmanuel 207
Hannula, Miika 186
Hellings, Jelle 225, 244
Hunter, Anthony 207

Ismail, Haythem O. 17

Kern-Isberner, Gabriele 379
Kontinen, Juha 186
Kovács, György 265
Kutsch, Steven 34

Lagasquie-Schiex, Marie-Christine 150
László, Zsolt 265
Link, Sebastian 3
Liu, Xudong 284

Meier, Arne 186, 303

Ognjanović, Zoran 170

Preuß, Marcel 77

Rácz, Gábor 322
Reinbold, Christian 303
Rodler, Patrick 340

Sali, Attila 322
Sauerwald, Kai 34
Savić, Nenad 170
Schekotihin, Konstantin 340
Schewe, Klaus-Dieter 322
Schmid, Wolfgang 340
Surinx, Dimitri 360
Šurkovský, Martin 133

Török, Levente 265
Truszczynski, Miroslaw 284

Van den Bussche, Jan 360
Van Gucht, Dirk 225, 244, 360
Varzinczak, Ivan 114
Virtema, Jonni 186

Wilhelm, Marco 379
Wu, Yuqing 225, 244

	Preface
	Conference Organization
	Keynote Speakers
	Computational Models of Argument: A New Perspective on Persisting KR Problems
	Automated Reasoning for Systems Engineering
	Old Keys that Open New Doors
	The Logical Basis of Knowledge Representation in Answer Set Programming
	Revisiting the Database Constraints Theory
	Contents
	Papers of Invited Talks
	Old Keys that Open New Doors
	1 Motivation
	2 Computational Problems
	3 Candidate Keys, Key Sets, Possible and Certain Keys
	3.1 Candidate Keys and UNIQUE Constraints
	3.2 Key Sets
	3.3 Certain and Possible Keys

	4 Embedded Uniqueness Constraints
	5 Summary
	6 Other Classes of Keys
	7 Open Problems
	References

	Regular Articles
	Concatenation, Separation, and Other Properties of Variably Polyadic Relations
	1 Introduction
	1.1 Terminology

	2 Properties of Variably Polyadic Relations
	3 Representing Variably Polyadic Relations
	4 Reasoning About Closures
	4.1 Concatenable-Only Relations
	4.2 Reversible Concatenable Relations
	4.3 Separable Concatenable Relations

	5 Conclusion
	References

	Compilation of Conditional Knowledge Bases for Computing C-Inference Relations
	1 Introduction
	2 Background
	3 Phase I: Compiling Knowledge Bases to CSPs
	4 Phase II: From CR(R) to Powerset Representations
	5 Phase III: Optimizing PSR Subtraction Expressions
	6 Compilation for Skeptical C-Inference
	7 Compilation Benefits and Implementation
	8 Credulous and Weakly Skeptical C-Inference
	9 Conclusions
	References

	Characterizing and Computing Causes for Query Answers in Databases from Database Repairs and Repair Programs
	1 Introduction
	2 Background
	2.1 Relational Databases
	2.2 Causality in Databases
	2.3 Database Repairs
	2.4 Disjunctive Answer-Set Programs

	3 Causes and Database Repairs
	3.1 Tuple-Based Causes from Repairs
	3.2 Abstract Causes from Abstract Repairs
	3.3 Attribute-Based Causes

	4 Specifying Tuple-Based Causes
	5 Specifying Attribute-Based Repairs and Causes
	6 Discussion
	References

	-1Inferences from Attribute-Disjoint and Duplicate-Preserving Relational Fragmentations
	1 Introduction
	2 Basic Definitions
	3 Frequency-Based Inferences Without Dependencies
	4 Inferences with Numerical Dependencies
	5 Inferences with Tuple-Generating Dependencies
	6 Related Work and Conclusions
	References

	ASP Programs with Groundings of Small Treewidth
	1 Introduction
	2 Preliminaries
	2.1 Answer Set Programming
	2.2 Treewidth

	3 Grounding
	4 Connection-Guarded ASP with Unbounded Degrees
	5 Guarded Answer Set Programs
	6 Discussion
	7 Conclusion
	References

	Rationality and Context in Defeasible Subsumption
	1 Introduction
	2 The Description Logic ALC
	3 Contextual Defeasibility in DLs
	3.1 Defeasible Constructs
	3.2 Preferential Semantics
	3.3 Modelling with Contexts

	4 Entailment in dALC
	4.1 Preferential Entailment
	4.2 Rational Entailment
	4.3 Computing Contextual Rational Closure
	4.4 Rational Reasoning with Contextual Ontologies

	5 Concluding Remarks
	References

	Haydi: Rapid Prototyping and Combinatorial Objects
	1 Introduction
	2 Examples
	2.1 Example: Directed Graphs
	2.2 Example: Reset Words

	3 Related Works
	4 Architecture
	4.1 Domains
	4.2 Pipeline

	5 Generating Canonical Forms
	5.1 Canonical Forms
	5.2 The Algorithm

	6 Distributed Computations
	7 Performance
	A Function check_automaton
	References

	Argumentation Frameworks with Recursive Attacks and Evidence-Based Supports
	1 Introduction
	2 Background
	2.1 Dung's Argumentation
	2.2 Recursive Argumentation
	2.3 Evidence-Based Argumentation

	3 Recursive Evidence-Based Argumentation
	3.1 Recursive Evidence-Based Argumentation Frameworks
	3.2 Semantics of Recursive Evidence-Based Argumentation Frameworks

	4 Relation with Recursive Argumentation Frameworks
	5 Relation with Dung's Argumentation Frameworks
	6 Relation with Evidence-Based Argumentation Frameworks
	7 Conclusion
	References

	A Decidable Multi-agent Logic with Iterations of Upper and Lower Probability Operators
	1 Introduction
	2 The Logic ILUPP
	2.1 Syntax
	2.2 Semantics

	3 Decidability
	4 A Complete Axiomatization
	4.1 The Axiomatization AxILUPP
	4.2 Completeness

	5 Conclusion
	References

	Probabilistic Team Semantics
	1 Introduction
	2 A Variant of Existential Second-Order Logic with Quantification over Rational Distributions
	3 Probabilistic Team Semantics
	3.1 Team and Multiteam Semantics
	3.2 Probabilistic Teams

	4 Translation from FO (c,) to ESOfQ
	5 Translation from ESOfQ to FO (c,)
	6 Complexity of FO () in Multiteams vs. Probabilistic Teams
	7 Conclusion
	References

	Strategic Dialogical Argumentation Using Multi-criteria Decision Making with Application to Epistemic and Emotional Aspects of Arguments
	1 Introduction
	2 Preliminaries
	3 Taking Emotion into Account
	4 Decision Making for Dialogues
	4.1 Decision Trees
	4.2 Multi-criteria Decision Making

	5 Dimensions of the Dialogue Problem
	5.1 Valuation
	5.2 Belief
	5.3 Affective Norm
	5.4 Comparing Dimensions
	5.5 Selection Method

	6 Size-Reducing Constraints
	6.1 Theoretical Results

	7 Computational Evaluation
	8 Study with Participants
	8.1 Preliminary Experimentation
	8.2 Participants, Material and Procedure
	8.3 Results

	9 Conclusion
	References

	First-Order Definable Counting-Only Queries
	1 Introduction
	2 Bags of Sets and Counting-Only Queries
	3 A First-Order Logic for Bag-of-Sets Structures
	4 QuineCALC and SimpleCALC
	5 Counting-Only Hierarchies
	6 Dichotomy for Satisfiability-Related Decision Problems
	6.1 Satisfiability of SimpleCALC is Decidable
	6.2 Satisfiability of [1] is Decidable
	6.3 Satisfiability of [2] is Undecidable

	7 Conclusion and Discussion
	References

	The Power of Tarski's Relation Algebra on Trees
	1 Introduction
	2 PreliminariesOur formalization of graphs, the relation algebra, and equivalence notions is adapted from concepts used by Fletcher et al. graphspsicdt,graphspsnavjr.
	3 Subtree Reductions
	4 The Power of Diversity
	4.1 Adding Diversity to Local Fragments
	4.2 Adding Other Operators to Non-local Fragments

	5 Brute-Force Results
	6 Collapse Results
	6.1 Condition Tree Queries
	6.2 Adding Intersection to Local Fragments
	6.3 The Boolean Equivalence of Projection and Converse

	7 Related Work
	8 Conclusion and Future Work
	References

	Improving the Performance of the k Rare Class Nearest Neighbor Classifier by the Ranking of Point Patterns
	1 Introduction
	2 Related Work
	3 A Brief Introduction to the k Rare Class Nearest Neighbor (kRNN) Algorithm
	3.1 Notations
	3.2 The k Rare Class Nearest Neighbor Algorithm
	3.3 Demonstrating the Operation of kRNN

	4 The Proposed Method
	4.1 Ranking of Point Configurations
	4.2 Summary of the Proposed Method

	5 Experiments and Results
	5.1 Experimental Settings
	5.2 Results at Particular Bandwidths
	5.3 The Aggregated Performance Measures as Functions of w
	5.4 Performance as a Function of k

	6 Discussion and Summary
	References

	Preference Learning and Optimization for Partial Lexicographic Preference Forests over Combinatorial Domains
	1 Introduction
	2 Partial Lexicographic Preference Trees and Forests
	3 Voting in Partial Lexicographic Preference Forests
	4 Computational Complexity
	5 Experiments and Results
	5.1 Datasets and Experimental Set-up
	5.2 Preference Prediction Results
	5.3 Preference Optimization Results
	5.4 Rank Correlation Results

	6 Conclusions and Future Work
	References

	Enumeration Complexity of Poor Man's Propositional Dependence Logic
	1 Introduction
	2 Preliminaries
	3 Results
	3.1 Enumeration in Poor Man's Propositional Dependence Logic
	3.2 Limiting Memory Space

	4 Conclusion
	References

	Refining Semantic Matching for Job Recruitment: An Application of Formal Concept Analysis
	1 Introduction
	2 Semantic Matching
	3 Lattice Enlargement
	3.1 Extension Graph
	3.2 Concept Lattice

	4 Extremal Problems
	5 Strict Approach
	5.1 Preserving Strict Matching in Extension Graph
	5.2 Preserving String Matching in Concept Lattice

	6 Related Work
	7 Summary
	References

	OntoDebug: Interactive Ontology Debugging Plug-in for Protégé
	1 Introduction
	2 Interactive Ontology Debugging
	3 OntoDebug Protégé Plug-in
	4 Settings and Hints for Proper Configuration
	5 Conclusions
	References

	A Framework for Comparing Query Languages in Their Ability to Express Boolean Queries
	1 Introduction
	2 Preliminaries
	2.1 Tests, Cylindrification, Complementation
	2.2 Navigational Graph Query Languages

	3 Boolean Query Modalities
	4 Comparing the Modalities
	4.1 Monotonicity
	4.2 Additivity
	4.3 Conjunctive Queries
	4.4 Navigational Graph Query Languages

	5 Cross-Language Comparisons
	6 Closure Under Boolean Connectives
	7 Discussion and Conclusion
	References

	A Generalized Iterative Scaling Algorithm for Maximum Entropy Model Computations Respecting Probabilistic Independencies
	1 Introduction
	2 Preliminaries
	3 Motivating the Study of Probabilistic Independencies
	4 Independence Criterion for MaxEnt Distributions
	5 Weighted Conditional Impact Systems
	6 Generalized Iterative Scaling Algorithm
	7 Empirical Results
	8 Conclusion and Future Work
	References

	Author Index

